铁和粘土扁平陶瓷膜合成策略的研究进展

IF 2.8 Q2 ENGINEERING, CHEMICAL ChemEngineering Pub Date : 2023-11-10 DOI:10.3390/chemengineering7060109
Rania Chihi, Antonio Comite, Lamjed Mansour, Sana Hraiech, Fadhila Ayari
{"title":"铁和粘土扁平陶瓷膜合成策略的研究进展","authors":"Rania Chihi, Antonio Comite, Lamjed Mansour, Sana Hraiech, Fadhila Ayari","doi":"10.3390/chemengineering7060109","DOIUrl":null,"url":null,"abstract":"Ceramic membranes prepared with flat sheet configuration using local materials, iron ore and bentonite, are reported in this investigation. The feedstocks used were fully characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) and laser diffraction/light scattering. In order to optimize the preparation conditions, the effect of sintering temperature on the microstructure of ferric and clayey membranes was assessed. Results obtained with SEM, confirmed by optical microscopy, indicate that the optimized sintering temperature was in the vicinity of 900 °C. The properties of the fabricated membranes were characterized in terms of mass and thickness loss throughout a determined period of time. The experimental results present a negligible variation in the rate of mass change, which suggested the stability of the synthesized membranes. Both the ferric and clayey membranes exhibit a prevalence of mesopores in their pore distribution. These results suggest that these specific membranes could be employed as cost-effective and environmentally friendly materials. Furthermore, they hold promise for potential applications in gas treatment processes.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":"3 ","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Synthesis Strategy of Ferric and Clayey Flat Ceramic Membranes\",\"authors\":\"Rania Chihi, Antonio Comite, Lamjed Mansour, Sana Hraiech, Fadhila Ayari\",\"doi\":\"10.3390/chemengineering7060109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ceramic membranes prepared with flat sheet configuration using local materials, iron ore and bentonite, are reported in this investigation. The feedstocks used were fully characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) and laser diffraction/light scattering. In order to optimize the preparation conditions, the effect of sintering temperature on the microstructure of ferric and clayey membranes was assessed. Results obtained with SEM, confirmed by optical microscopy, indicate that the optimized sintering temperature was in the vicinity of 900 °C. The properties of the fabricated membranes were characterized in terms of mass and thickness loss throughout a determined period of time. The experimental results present a negligible variation in the rate of mass change, which suggested the stability of the synthesized membranes. Both the ferric and clayey membranes exhibit a prevalence of mesopores in their pore distribution. These results suggest that these specific membranes could be employed as cost-effective and environmentally friendly materials. Furthermore, they hold promise for potential applications in gas treatment processes.\",\"PeriodicalId\":9755,\"journal\":{\"name\":\"ChemEngineering\",\"volume\":\"3 \",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemengineering7060109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7060109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了用铁矿和膨润土等本地材料制备的平板陶瓷膜。采用x射线衍射(XRD)、热重分析(TGA)、扫描电子显微镜(SEM-EDS)和激光衍射/光散射对原料进行了全面表征。为了优化制备条件,考察了烧结温度对铁膜和粘土膜微观结构的影响。扫描电镜和光学显微镜的结果表明,优化的烧结温度在900℃左右。制备膜的性能在一定时间内的质量和厚度损失方面进行了表征。实验结果表明,质量变化率的变化可以忽略不计,这表明合成膜的稳定性。铁膜和粘土膜在其孔隙分布中都表现出中孔的普遍存在。这些结果表明,这些特殊的膜可以作为经济高效的环保材料使用。此外,它们在气体处理过程中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Synthesis Strategy of Ferric and Clayey Flat Ceramic Membranes
Ceramic membranes prepared with flat sheet configuration using local materials, iron ore and bentonite, are reported in this investigation. The feedstocks used were fully characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) and laser diffraction/light scattering. In order to optimize the preparation conditions, the effect of sintering temperature on the microstructure of ferric and clayey membranes was assessed. Results obtained with SEM, confirmed by optical microscopy, indicate that the optimized sintering temperature was in the vicinity of 900 °C. The properties of the fabricated membranes were characterized in terms of mass and thickness loss throughout a determined period of time. The experimental results present a negligible variation in the rate of mass change, which suggested the stability of the synthesized membranes. Both the ferric and clayey membranes exhibit a prevalence of mesopores in their pore distribution. These results suggest that these specific membranes could be employed as cost-effective and environmentally friendly materials. Furthermore, they hold promise for potential applications in gas treatment processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemEngineering
ChemEngineering Engineering-Engineering (all)
CiteScore
4.00
自引率
4.00%
发文量
88
审稿时长
11 weeks
期刊最新文献
Catalysts Based on Iron Oxides for Wastewater Purification from Phenolic Compounds: Synthesis, Physicochemical Analysis, Determination of Catalytic Activity Effect of Inserting Baffles on the Solid Particle Segregation Behavior in Fluidized Bed Reactor: A Computational Study Force Field for Calculation of the Vapor-Liquid Phase Equilibrium of trans-Decalin Antisolvent Crystallization of Papain Ultrafiltration to Increase the Consistency of Fruit Pulps: The Role of Permeate Flux
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1