{"title":"DephosNet:一种新的去磷酸化位点预测迁移学习方法","authors":"Qing Yang, Xun Wang, Pan Zheng","doi":"10.3390/computers12110229","DOIUrl":null,"url":null,"abstract":"Protein dephosphorylation is the process of removing phosphate groups from protein molecules, which plays a vital role in regulating various cellular processes and intricate protein signaling networks. The identification and prediction of dephosphorylation sites are crucial for this process. Previously, there was a lack of effective deep learning models for predicting these sites, often resulting in suboptimal outcomes. In this study, we introduce a deep learning framework known as “DephosNet”, which leverages transfer learning to enhance dephosphorylation site prediction. DephosNet employs dual-window sequential inputs that are embedded and subsequently processed through a series of network architectures, including ResBlock, Multi-Head Attention, and BiGRU layers. It generates predictions for both dephosphorylation and phosphorylation site probabilities. DephosNet is pre-trained on a phosphorylation dataset and then fine-tuned on the parameters with a dephosphorylation dataset. Notably, transfer learning significantly enhances DephosNet’s performance on the same dataset. Experimental results demonstrate that, when compared with other state-of-the-art models, DephosNet outperforms them on both the independent test sets for phosphorylation and dephosphorylation.","PeriodicalId":46292,"journal":{"name":"Computers","volume":" 26","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DephosNet: A Novel Transfer Learning Approach for Dephosphorylation Site Prediction\",\"authors\":\"Qing Yang, Xun Wang, Pan Zheng\",\"doi\":\"10.3390/computers12110229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein dephosphorylation is the process of removing phosphate groups from protein molecules, which plays a vital role in regulating various cellular processes and intricate protein signaling networks. The identification and prediction of dephosphorylation sites are crucial for this process. Previously, there was a lack of effective deep learning models for predicting these sites, often resulting in suboptimal outcomes. In this study, we introduce a deep learning framework known as “DephosNet”, which leverages transfer learning to enhance dephosphorylation site prediction. DephosNet employs dual-window sequential inputs that are embedded and subsequently processed through a series of network architectures, including ResBlock, Multi-Head Attention, and BiGRU layers. It generates predictions for both dephosphorylation and phosphorylation site probabilities. DephosNet is pre-trained on a phosphorylation dataset and then fine-tuned on the parameters with a dephosphorylation dataset. Notably, transfer learning significantly enhances DephosNet’s performance on the same dataset. Experimental results demonstrate that, when compared with other state-of-the-art models, DephosNet outperforms them on both the independent test sets for phosphorylation and dephosphorylation.\",\"PeriodicalId\":46292,\"journal\":{\"name\":\"Computers\",\"volume\":\" 26\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers12110229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12110229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
DephosNet: A Novel Transfer Learning Approach for Dephosphorylation Site Prediction
Protein dephosphorylation is the process of removing phosphate groups from protein molecules, which plays a vital role in regulating various cellular processes and intricate protein signaling networks. The identification and prediction of dephosphorylation sites are crucial for this process. Previously, there was a lack of effective deep learning models for predicting these sites, often resulting in suboptimal outcomes. In this study, we introduce a deep learning framework known as “DephosNet”, which leverages transfer learning to enhance dephosphorylation site prediction. DephosNet employs dual-window sequential inputs that are embedded and subsequently processed through a series of network architectures, including ResBlock, Multi-Head Attention, and BiGRU layers. It generates predictions for both dephosphorylation and phosphorylation site probabilities. DephosNet is pre-trained on a phosphorylation dataset and then fine-tuned on the parameters with a dephosphorylation dataset. Notably, transfer learning significantly enhances DephosNet’s performance on the same dataset. Experimental results demonstrate that, when compared with other state-of-the-art models, DephosNet outperforms them on both the independent test sets for phosphorylation and dephosphorylation.