DephosNet:一种新的去磷酸化位点预测迁移学习方法

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers Pub Date : 2023-11-10 DOI:10.3390/computers12110229
Qing Yang, Xun Wang, Pan Zheng
{"title":"DephosNet:一种新的去磷酸化位点预测迁移学习方法","authors":"Qing Yang, Xun Wang, Pan Zheng","doi":"10.3390/computers12110229","DOIUrl":null,"url":null,"abstract":"Protein dephosphorylation is the process of removing phosphate groups from protein molecules, which plays a vital role in regulating various cellular processes and intricate protein signaling networks. The identification and prediction of dephosphorylation sites are crucial for this process. Previously, there was a lack of effective deep learning models for predicting these sites, often resulting in suboptimal outcomes. In this study, we introduce a deep learning framework known as “DephosNet”, which leverages transfer learning to enhance dephosphorylation site prediction. DephosNet employs dual-window sequential inputs that are embedded and subsequently processed through a series of network architectures, including ResBlock, Multi-Head Attention, and BiGRU layers. It generates predictions for both dephosphorylation and phosphorylation site probabilities. DephosNet is pre-trained on a phosphorylation dataset and then fine-tuned on the parameters with a dephosphorylation dataset. Notably, transfer learning significantly enhances DephosNet’s performance on the same dataset. Experimental results demonstrate that, when compared with other state-of-the-art models, DephosNet outperforms them on both the independent test sets for phosphorylation and dephosphorylation.","PeriodicalId":46292,"journal":{"name":"Computers","volume":" 26","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DephosNet: A Novel Transfer Learning Approach for Dephosphorylation Site Prediction\",\"authors\":\"Qing Yang, Xun Wang, Pan Zheng\",\"doi\":\"10.3390/computers12110229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein dephosphorylation is the process of removing phosphate groups from protein molecules, which plays a vital role in regulating various cellular processes and intricate protein signaling networks. The identification and prediction of dephosphorylation sites are crucial for this process. Previously, there was a lack of effective deep learning models for predicting these sites, often resulting in suboptimal outcomes. In this study, we introduce a deep learning framework known as “DephosNet”, which leverages transfer learning to enhance dephosphorylation site prediction. DephosNet employs dual-window sequential inputs that are embedded and subsequently processed through a series of network architectures, including ResBlock, Multi-Head Attention, and BiGRU layers. It generates predictions for both dephosphorylation and phosphorylation site probabilities. DephosNet is pre-trained on a phosphorylation dataset and then fine-tuned on the parameters with a dephosphorylation dataset. Notably, transfer learning significantly enhances DephosNet’s performance on the same dataset. Experimental results demonstrate that, when compared with other state-of-the-art models, DephosNet outperforms them on both the independent test sets for phosphorylation and dephosphorylation.\",\"PeriodicalId\":46292,\"journal\":{\"name\":\"Computers\",\"volume\":\" 26\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers12110229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12110229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质去磷酸化是蛋白质分子中磷酸基团的去除过程,在调节各种细胞过程和复杂的蛋白质信号网络中起着至关重要的作用。去磷酸化位点的识别和预测对这一过程至关重要。以前,缺乏有效的深度学习模型来预测这些站点,通常会导致次优结果。在这项研究中,我们引入了一个名为“DephosNet”的深度学习框架,它利用迁移学习来增强去磷酸化位点的预测。DephosNet采用嵌入式的双窗口顺序输入,随后通过一系列网络架构进行处理,包括ResBlock、Multi-Head Attention和BiGRU层。它生成去磷酸化和磷酸化位点概率的预测。DephosNet在磷酸化数据集上进行预训练,然后使用去磷酸化数据集对参数进行微调。值得注意的是,迁移学习显著提高了DephosNet在相同数据集上的性能。实验结果表明,与其他最先进的模型相比,DephosNet在磷酸化和去磷酸化的独立测试集上都优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DephosNet: A Novel Transfer Learning Approach for Dephosphorylation Site Prediction
Protein dephosphorylation is the process of removing phosphate groups from protein molecules, which plays a vital role in regulating various cellular processes and intricate protein signaling networks. The identification and prediction of dephosphorylation sites are crucial for this process. Previously, there was a lack of effective deep learning models for predicting these sites, often resulting in suboptimal outcomes. In this study, we introduce a deep learning framework known as “DephosNet”, which leverages transfer learning to enhance dephosphorylation site prediction. DephosNet employs dual-window sequential inputs that are embedded and subsequently processed through a series of network architectures, including ResBlock, Multi-Head Attention, and BiGRU layers. It generates predictions for both dephosphorylation and phosphorylation site probabilities. DephosNet is pre-trained on a phosphorylation dataset and then fine-tuned on the parameters with a dephosphorylation dataset. Notably, transfer learning significantly enhances DephosNet’s performance on the same dataset. Experimental results demonstrate that, when compared with other state-of-the-art models, DephosNet outperforms them on both the independent test sets for phosphorylation and dephosphorylation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
期刊最新文献
Advanced Road Safety: Collective Perception for Probability of Collision Estimation of Connected Vehicles Forecasting of Bitcoin Illiquidity Using High-Dimensional and Textual Features Mining Negative Associations from Medical Databases Considering Frequent, Regular, Closed and Maximal Patterns Faraway, so Close: Perceptions of the Metaverse on the Edge of Madness Blockchain-Powered Gaming: Bridging Entertainment with Serious Game Objectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1