Autovesk:使用图形转换从非结构化静态内核自动向量化代码生成

IF 1.5 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Architecture and Code Optimization Pub Date : 2023-11-09 DOI:10.1145/3631709
Hayfa Tayeb, Ludovic Paillat, Bérenger Bramas
{"title":"Autovesk:使用图形转换从非结构化静态内核自动向量化代码生成","authors":"Hayfa Tayeb, Ludovic Paillat, Bérenger Bramas","doi":"10.1145/3631709","DOIUrl":null,"url":null,"abstract":"Leveraging the SIMD capability of modern CPU architectures is mandatory to take full advantage of their increased performance. To exploit this capability, binary executables must be vectorized, either manually by developers or automatically by a tool. For this reason, the compilation research community has developed several strategies for transforming scalar code into a vectorized implementation. However, most existing automatic vectorization techniques in modern compilers are designed for regular codes, leaving irregular applications with non-contiguous data access patterns at a disadvantage. In this paper, we present a new tool, Autovesk, that automatically generates vectorized code from scalar code, specifically targeting irregular data access patterns. We describe how our method transforms a graph of scalar instructions into a vectorized one, using different heuristics to reduce the number or cost of instructions. Finally, we demonstrate the effectiveness of our approach on various computational kernels using Intel AVX-512 and ARM SVE. We compare the speedups of Autovesk vectorized code over GCC, Clang LLVM and Intel automatic vectorization optimizations. We achieve competitive results on linear kernels and up to 11x speedups on irregular kernels.","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":" 42","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autovesk: Automatic vectorized code generation from unstructured static kernels using graph transformations\",\"authors\":\"Hayfa Tayeb, Ludovic Paillat, Bérenger Bramas\",\"doi\":\"10.1145/3631709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leveraging the SIMD capability of modern CPU architectures is mandatory to take full advantage of their increased performance. To exploit this capability, binary executables must be vectorized, either manually by developers or automatically by a tool. For this reason, the compilation research community has developed several strategies for transforming scalar code into a vectorized implementation. However, most existing automatic vectorization techniques in modern compilers are designed for regular codes, leaving irregular applications with non-contiguous data access patterns at a disadvantage. In this paper, we present a new tool, Autovesk, that automatically generates vectorized code from scalar code, specifically targeting irregular data access patterns. We describe how our method transforms a graph of scalar instructions into a vectorized one, using different heuristics to reduce the number or cost of instructions. Finally, we demonstrate the effectiveness of our approach on various computational kernels using Intel AVX-512 and ARM SVE. We compare the speedups of Autovesk vectorized code over GCC, Clang LLVM and Intel automatic vectorization optimizations. We achieve competitive results on linear kernels and up to 11x speedups on irregular kernels.\",\"PeriodicalId\":50920,\"journal\":{\"name\":\"ACM Transactions on Architecture and Code Optimization\",\"volume\":\" 42\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Architecture and Code Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631709\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631709","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

必须利用现代CPU体系结构的SIMD功能,才能充分利用其提高的性能。为了利用这个功能,二进制可执行文件必须进行矢量化,要么由开发人员手动进行,要么由工具自动进行。由于这个原因,编译研究界已经开发了几种将标量代码转换为矢量化实现的策略。然而,现代编译器中大多数现有的自动向量化技术都是为规则代码设计的,这使得具有非连续数据访问模式的不规则应用程序处于不利地位。在本文中,我们提出了一个新的工具Autovesk,它可以从标量代码自动生成矢量化代码,特别是针对不规则的数据访问模式。我们描述了我们的方法如何将标量指令图转换为矢量图,使用不同的启发式方法来减少指令的数量或成本。最后,我们展示了我们的方法在使用Intel AVX-512和ARM SVE的各种计算内核上的有效性。我们比较了Autovesk矢量化代码与GCC、Clang LLVM和Intel自动矢量化优化的速度提升。我们在线性核上获得了竞争性的结果,在不规则核上获得了高达11倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autovesk: Automatic vectorized code generation from unstructured static kernels using graph transformations
Leveraging the SIMD capability of modern CPU architectures is mandatory to take full advantage of their increased performance. To exploit this capability, binary executables must be vectorized, either manually by developers or automatically by a tool. For this reason, the compilation research community has developed several strategies for transforming scalar code into a vectorized implementation. However, most existing automatic vectorization techniques in modern compilers are designed for regular codes, leaving irregular applications with non-contiguous data access patterns at a disadvantage. In this paper, we present a new tool, Autovesk, that automatically generates vectorized code from scalar code, specifically targeting irregular data access patterns. We describe how our method transforms a graph of scalar instructions into a vectorized one, using different heuristics to reduce the number or cost of instructions. Finally, we demonstrate the effectiveness of our approach on various computational kernels using Intel AVX-512 and ARM SVE. We compare the speedups of Autovesk vectorized code over GCC, Clang LLVM and Intel automatic vectorization optimizations. We achieve competitive results on linear kernels and up to 11x speedups on irregular kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Architecture and Code Optimization
ACM Transactions on Architecture and Code Optimization 工程技术-计算机:理论方法
CiteScore
3.60
自引率
6.20%
发文量
78
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.
期刊最新文献
A Survey of General-purpose Polyhedral Compilers Sectored DRAM: A Practical Energy-Efficient and High-Performance Fine-Grained DRAM Architecture Scythe: A Low-latency RDMA-enabled Distributed Transaction System for Disaggregated Memory FASA-DRAM: Reducing DRAM Latency with Destructive Activation and Delayed Restoration CoolDC: A Cost-Effective Immersion-Cooled Datacenter with Workload-Aware Temperature Scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1