基于实验室的微计算机断层扫描辅助木材有限元建模及其当前的瓶颈概述

IF 2.2 3区 农林科学 Q2 FORESTRY Holzforschung Pub Date : 2023-11-09 DOI:10.1515/hf-2023-0061
Sara Florisson, Erik Kristofer Gamstedt
{"title":"基于实验室的微计算机断层扫描辅助木材有限元建模及其当前的瓶颈概述","authors":"Sara Florisson, Erik Kristofer Gamstedt","doi":"10.1515/hf-2023-0061","DOIUrl":null,"url":null,"abstract":"Abstract Microscopic lab-based X-ray computed tomography (XµCT) aided finite element (FE) modelling is a popular method with increasing nature within material science to predict local material properties of heterogeneous materials, e.g. elastic, hygroexpansion and diffusion. This method is relatively new to wood and lacks a clear methodology. Research intended to optimise the XµCT aided FE process often focuses on specific aspects within this process such as the XµCT scanning, segmentation or meshing, but not the entirety of the process. The compatibility and data transfer between aspects have not been investigated to the same extent, which creates errors that propagate and negatively impact the end results. In the current study, a methodology for the XµCT aided FE process of wood is suggested and its bottlenecks are identified based on a thorough literature review. Although the complexity of wood as a material makes it difficult to automate the XµCT aided FE process, the proposed methodology can assist in a more considered design and execution of this process. The main challenges that were identified include an automatic procedure to reconstruct the fibre orientation and to perform segmentation and meshing. A combined deep-learning segmentation method with geometry-based meshing can be suggested.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview of lab-based micro computed tomography aided finite element modelling of wood and its current bottlenecks\",\"authors\":\"Sara Florisson, Erik Kristofer Gamstedt\",\"doi\":\"10.1515/hf-2023-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Microscopic lab-based X-ray computed tomography (XµCT) aided finite element (FE) modelling is a popular method with increasing nature within material science to predict local material properties of heterogeneous materials, e.g. elastic, hygroexpansion and diffusion. This method is relatively new to wood and lacks a clear methodology. Research intended to optimise the XµCT aided FE process often focuses on specific aspects within this process such as the XµCT scanning, segmentation or meshing, but not the entirety of the process. The compatibility and data transfer between aspects have not been investigated to the same extent, which creates errors that propagate and negatively impact the end results. In the current study, a methodology for the XµCT aided FE process of wood is suggested and its bottlenecks are identified based on a thorough literature review. Although the complexity of wood as a material makes it difficult to automate the XµCT aided FE process, the proposed methodology can assist in a more considered design and execution of this process. The main challenges that were identified include an automatic procedure to reconstruct the fibre orientation and to perform segmentation and meshing. A combined deep-learning segmentation method with geometry-based meshing can be suggested.\",\"PeriodicalId\":13083,\"journal\":{\"name\":\"Holzforschung\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holzforschung\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/hf-2023-0061\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/hf-2023-0061","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

基于实验室的微观X射线计算机断层扫描(XµCT)辅助有限元(FE)建模是一种在材料科学中越来越受欢迎的方法,用于预测非均质材料的局部材料特性,例如弹性、湿膨胀和扩散。这种方法相对较新,缺乏明确的方法。旨在优化XµCT辅助有限元过程的研究通常侧重于该过程中的特定方面,如XµCT扫描、分割或网格划分,而不是整个过程。方面之间的兼容性和数据传输没有得到相同程度的研究,这就产生了传播错误并对最终结果产生负面影响的错误。在目前的研究中,提出了一种XµCT辅助木材有限元过程的方法,并根据全面的文献综述确定了其瓶颈。尽管木材作为一种材料的复杂性使得XµCT辅助FE过程的自动化变得困难,但所提出的方法可以帮助更周到的设计和执行该过程。确定的主要挑战包括重建纤维方向的自动程序以及执行分割和网格划分。提出了一种结合深度学习和几何网格划分的分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An overview of lab-based micro computed tomography aided finite element modelling of wood and its current bottlenecks
Abstract Microscopic lab-based X-ray computed tomography (XµCT) aided finite element (FE) modelling is a popular method with increasing nature within material science to predict local material properties of heterogeneous materials, e.g. elastic, hygroexpansion and diffusion. This method is relatively new to wood and lacks a clear methodology. Research intended to optimise the XµCT aided FE process often focuses on specific aspects within this process such as the XµCT scanning, segmentation or meshing, but not the entirety of the process. The compatibility and data transfer between aspects have not been investigated to the same extent, which creates errors that propagate and negatively impact the end results. In the current study, a methodology for the XµCT aided FE process of wood is suggested and its bottlenecks are identified based on a thorough literature review. Although the complexity of wood as a material makes it difficult to automate the XµCT aided FE process, the proposed methodology can assist in a more considered design and execution of this process. The main challenges that were identified include an automatic procedure to reconstruct the fibre orientation and to perform segmentation and meshing. A combined deep-learning segmentation method with geometry-based meshing can be suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Holzforschung
Holzforschung 工程技术-材料科学:纸与木材
CiteScore
4.60
自引率
4.20%
发文量
83
审稿时长
3.3 months
期刊介绍: Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.
期刊最新文献
Degradation of Pinus sylvestris and Populus tremula by laccate Ganoderma species Wood density and chemical composition variation of Eucalyptus urophylla clone in different environments Wood discrimination of six commonly traded Phoebe and Machilus species using high-resolution plastid and nuclear DNA barcodes Physical, vibro-mechanical and optical properties of pernambuco in relation to bow-making qualitative evaluation and wood diversity Comparative wood and charcoal anatomy of Manilkara sp.: contribution for market inspections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1