镁合金阳极强化阴极动力学的实验研究

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Corrosion Pub Date : 2023-09-29 DOI:10.5006/4420
Taylor W. Cain, Carol F. Glover, John R. Scully
{"title":"镁合金阳极强化阴极动力学的实验研究","authors":"Taylor W. Cain, Carol F. Glover, John R. Scully","doi":"10.5006/4420","DOIUrl":null,"url":null,"abstract":"The anodically enhanced cathodic kinetics behavior of eighteen different Mg alloys encompassing commercially pure Mg, Mg-Al, Mg-Zn, Mg-Sn, and Mg-RE (RE = rare earth element) based alloys was studied via global and local electrochemical methods in unbuffered 0.6 M NaCl. The total cathodic enhancement observed for Mg-Al and Mg-Sn alloys was found to decrease with increasing primary alloy content whereas the cathodic activity of Mg-Zn based alloys increased with alloying content. Furthermore, a lower fraction of secondary phases expressed as a volume fraction present generally lead to lower susceptibility towards anodically enhanced cathodic kinetics. The variations in enhanced cathodic activity were attributed to the identity of the primary alloying element, microstructure, and nature of the dissolution product film.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Survey of Anodically Enhanced Cathodic Kinetics of Magnesium Alloys\",\"authors\":\"Taylor W. Cain, Carol F. Glover, John R. Scully\",\"doi\":\"10.5006/4420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The anodically enhanced cathodic kinetics behavior of eighteen different Mg alloys encompassing commercially pure Mg, Mg-Al, Mg-Zn, Mg-Sn, and Mg-RE (RE = rare earth element) based alloys was studied via global and local electrochemical methods in unbuffered 0.6 M NaCl. The total cathodic enhancement observed for Mg-Al and Mg-Sn alloys was found to decrease with increasing primary alloy content whereas the cathodic activity of Mg-Zn based alloys increased with alloying content. Furthermore, a lower fraction of secondary phases expressed as a volume fraction present generally lead to lower susceptibility towards anodically enhanced cathodic kinetics. The variations in enhanced cathodic activity were attributed to the identity of the primary alloying element, microstructure, and nature of the dissolution product film.\",\"PeriodicalId\":10717,\"journal\":{\"name\":\"Corrosion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5006/4420\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5006/4420","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过电化学方法研究了18种不同的Mg合金(包括商业纯Mg、Mg- al、Mg- zn、Mg- sn和Mg-RE (RE =稀土元素)基合金)在无缓冲的0.6 M NaCl中阳极增强的阴极动力学行为。Mg-Al和Mg-Sn合金的总阴极增强随合金含量的增加而降低,而Mg-Zn基合金的阴极活性随合金含量的增加而增加。此外,以体积分数表示的次级相的较低分数通常导致对阳极增强的阴极动力学的较低敏感性。阴极活性增强的变化归因于合金元素、微观结构和溶解产物膜的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Experimental Survey of Anodically Enhanced Cathodic Kinetics of Magnesium Alloys
The anodically enhanced cathodic kinetics behavior of eighteen different Mg alloys encompassing commercially pure Mg, Mg-Al, Mg-Zn, Mg-Sn, and Mg-RE (RE = rare earth element) based alloys was studied via global and local electrochemical methods in unbuffered 0.6 M NaCl. The total cathodic enhancement observed for Mg-Al and Mg-Sn alloys was found to decrease with increasing primary alloy content whereas the cathodic activity of Mg-Zn based alloys increased with alloying content. Furthermore, a lower fraction of secondary phases expressed as a volume fraction present generally lead to lower susceptibility towards anodically enhanced cathodic kinetics. The variations in enhanced cathodic activity were attributed to the identity of the primary alloying element, microstructure, and nature of the dissolution product film.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion
Corrosion MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
2.80
自引率
12.50%
发文量
97
审稿时长
3 months
期刊介绍: CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion. 70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities. Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives: • Contribute awareness of corrosion phenomena, • Advance understanding of fundamental process, and/or • Further the knowledge of techniques and practices used to reduce corrosion.
期刊最新文献
Implications of grout condition on galvanic coupling and hydrogen absorption within post-tensioned bridge tendons constructed with galvanized steel ducts Bimodal trending in corrosion loss of magnesium alloys Corrosion behavior of Cu-Ni-Fe-Mn-Cr alloy in 3.5 wt.% NaCl solution An Investigation of Corrosion Behaviors of Thermally Sprayed Aluminum (TSA) at Elevated Temperatures Under Thermal Insulations and Autoclave Immersion Conditions A stochastic modeling method for three-dimensional corrosion pits of bridge cable wires and its application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1