Alexander Straub, Grzegorz K. Karch, Jonas Steigerwald, Filip Sadlo, Bernhard Weigand, Thomas Ertl
{"title":"多相流界面变形的可视化分析","authors":"Alexander Straub, Grzegorz K. Karch, Jonas Steigerwald, Filip Sadlo, Bernhard Weigand, Thomas Ertl","doi":"10.1007/s12650-023-00939-x","DOIUrl":null,"url":null,"abstract":"Abstract In multiphase flows, the evolution of fluid-fluid interfaces is of interest in many applications. In addition to fluid dynamic forces governing the flow in the entire volume, surface tension determines droplet interfaces. Here, the analysis of interface kinematics can help in the investigation of interface deformation and the identification of potential breakups. To this end, we developed a visualization technique using metric and shape tensors to analyze interface stretching and bending. For interface stretching, we employ the eigenpairs of the metric tensor defined for the deformation rate of the fluid surface. For interface bending, we present a technique that locally captures the interface curvature change in terms of a shape tensor, extracting its principal directions and curvatures. We then visualize interface deformation by combining both representations into a novel glyph design. We apply our method to study multiphase flow simulations with particular emphasis on interface effects. These include the interplay between fluid dynamics and surface tension forces leading to breakup processes following droplet collisions, as well as droplet-droplet interactions of different fluids where Marangoni convection along the surface is explicitly taken into account. Graphical abstract","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"87 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual analysis of interface deformation in multiphase flow\",\"authors\":\"Alexander Straub, Grzegorz K. Karch, Jonas Steigerwald, Filip Sadlo, Bernhard Weigand, Thomas Ertl\",\"doi\":\"10.1007/s12650-023-00939-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In multiphase flows, the evolution of fluid-fluid interfaces is of interest in many applications. In addition to fluid dynamic forces governing the flow in the entire volume, surface tension determines droplet interfaces. Here, the analysis of interface kinematics can help in the investigation of interface deformation and the identification of potential breakups. To this end, we developed a visualization technique using metric and shape tensors to analyze interface stretching and bending. For interface stretching, we employ the eigenpairs of the metric tensor defined for the deformation rate of the fluid surface. For interface bending, we present a technique that locally captures the interface curvature change in terms of a shape tensor, extracting its principal directions and curvatures. We then visualize interface deformation by combining both representations into a novel glyph design. We apply our method to study multiphase flow simulations with particular emphasis on interface effects. These include the interplay between fluid dynamics and surface tension forces leading to breakup processes following droplet collisions, as well as droplet-droplet interactions of different fluids where Marangoni convection along the surface is explicitly taken into account. Graphical abstract\",\"PeriodicalId\":54756,\"journal\":{\"name\":\"Journal of Visualization\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12650-023-00939-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12650-023-00939-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Visual analysis of interface deformation in multiphase flow
Abstract In multiphase flows, the evolution of fluid-fluid interfaces is of interest in many applications. In addition to fluid dynamic forces governing the flow in the entire volume, surface tension determines droplet interfaces. Here, the analysis of interface kinematics can help in the investigation of interface deformation and the identification of potential breakups. To this end, we developed a visualization technique using metric and shape tensors to analyze interface stretching and bending. For interface stretching, we employ the eigenpairs of the metric tensor defined for the deformation rate of the fluid surface. For interface bending, we present a technique that locally captures the interface curvature change in terms of a shape tensor, extracting its principal directions and curvatures. We then visualize interface deformation by combining both representations into a novel glyph design. We apply our method to study multiphase flow simulations with particular emphasis on interface effects. These include the interplay between fluid dynamics and surface tension forces leading to breakup processes following droplet collisions, as well as droplet-droplet interactions of different fluids where Marangoni convection along the surface is explicitly taken into account. Graphical abstract
Journal of VisualizationCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.40
自引率
5.90%
发文量
79
审稿时长
>12 weeks
期刊介绍:
Visualization is an interdisciplinary imaging science devoted to making the invisible visible through the techniques of experimental visualization and computer-aided visualization.
The scope of the Journal is to provide a place to exchange information on the latest visualization technology and its application by the presentation of latest papers of both researchers and technicians.