{"title":"吡啶-1,3,5-三嗪-二胺钴(II)复合物光催化二氧化碳还原为 CO","authors":"Leiyu Wang, Jing Chen, Tingting Yang, Yingying Liu, Zhenguo Guo, Jianhui Xie","doi":"10.1007/s11243-023-00557-4","DOIUrl":null,"url":null,"abstract":"<div><p>The development of molecular photocatalytic systems for CO<sub>2</sub> reduction is a continuous challenge for chemists. Herein, the photocatalytic reductions of CO<sub>2</sub> by [Co<sup>II(</sup>L1)(<i>η</i><sup>1</sup>-ONO<sub>2</sub>)<sub>2</sub>] (<b>1</b>) (<b>L1</b> = 6,6'-(pyridine-2,6-diyl)bis(1,3,5-triazine-2,4-diamine)) and [Co<sup>II</sup>(L2)(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup> (<b>2</b>) (<b>L2</b> = 6,6'-([2,2'-bipyridine]-6,6'-diyl)bis(1,3,5-triazine-2,4-diamine)) have been investigated. With Ir(ppy)<sub>3</sub> as the photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1<i>H</i>-benzo[<i>d</i>]imidazole as the sacrificial reductant in DMF/triethylamine solution under irradiation by white light-emitting diode (λ > 420 nm), CO was selectively produced with a turnover number (TON) of 36 and 89 for <b>1</b> and<b> 2</b>, respectively. Based on the electrochemical studies, the triply reduced [Co<sup>0</sup>(L2•)]ˉ species from <b>2</b> is found to be responsible for the activation of CO<sub>2</sub> with a large rate constant of <i>k</i> = 506 M<sup>−1</sup> s<sup>−1</sup>. However, the strong CO binding constant of Co<sup>I</sup>(L2)-CO adduct (<i>K</i> = 5.01 × 10<sup>6</sup>) and the slow CO release from Co<sup>0</sup>(L2)-CO adduct limit the catalytic efficiency.</p></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"49 1","pages":"11 - 16"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic CO2 reduction to CO by Cobalt(II) Pyridinyl-1,3,5-Triazine-Diamine complexes\",\"authors\":\"Leiyu Wang, Jing Chen, Tingting Yang, Yingying Liu, Zhenguo Guo, Jianhui Xie\",\"doi\":\"10.1007/s11243-023-00557-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of molecular photocatalytic systems for CO<sub>2</sub> reduction is a continuous challenge for chemists. Herein, the photocatalytic reductions of CO<sub>2</sub> by [Co<sup>II(</sup>L1)(<i>η</i><sup>1</sup>-ONO<sub>2</sub>)<sub>2</sub>] (<b>1</b>) (<b>L1</b> = 6,6'-(pyridine-2,6-diyl)bis(1,3,5-triazine-2,4-diamine)) and [Co<sup>II</sup>(L2)(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup> (<b>2</b>) (<b>L2</b> = 6,6'-([2,2'-bipyridine]-6,6'-diyl)bis(1,3,5-triazine-2,4-diamine)) have been investigated. With Ir(ppy)<sub>3</sub> as the photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1<i>H</i>-benzo[<i>d</i>]imidazole as the sacrificial reductant in DMF/triethylamine solution under irradiation by white light-emitting diode (λ > 420 nm), CO was selectively produced with a turnover number (TON) of 36 and 89 for <b>1</b> and<b> 2</b>, respectively. Based on the electrochemical studies, the triply reduced [Co<sup>0</sup>(L2•)]ˉ species from <b>2</b> is found to be responsible for the activation of CO<sub>2</sub> with a large rate constant of <i>k</i> = 506 M<sup>−1</sup> s<sup>−1</sup>. However, the strong CO binding constant of Co<sup>I</sup>(L2)-CO adduct (<i>K</i> = 5.01 × 10<sup>6</sup>) and the slow CO release from Co<sup>0</sup>(L2)-CO adduct limit the catalytic efficiency.</p></div>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"49 1\",\"pages\":\"11 - 16\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-023-00557-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-023-00557-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Photocatalytic CO2 reduction to CO by Cobalt(II) Pyridinyl-1,3,5-Triazine-Diamine complexes
The development of molecular photocatalytic systems for CO2 reduction is a continuous challenge for chemists. Herein, the photocatalytic reductions of CO2 by [CoII(L1)(η1-ONO2)2] (1) (L1 = 6,6'-(pyridine-2,6-diyl)bis(1,3,5-triazine-2,4-diamine)) and [CoII(L2)(H2O)2]2+ (2) (L2 = 6,6'-([2,2'-bipyridine]-6,6'-diyl)bis(1,3,5-triazine-2,4-diamine)) have been investigated. With Ir(ppy)3 as the photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the sacrificial reductant in DMF/triethylamine solution under irradiation by white light-emitting diode (λ > 420 nm), CO was selectively produced with a turnover number (TON) of 36 and 89 for 1 and 2, respectively. Based on the electrochemical studies, the triply reduced [Co0(L2•)]ˉ species from 2 is found to be responsible for the activation of CO2 with a large rate constant of k = 506 M−1 s−1. However, the strong CO binding constant of CoI(L2)-CO adduct (K = 5.01 × 106) and the slow CO release from Co0(L2)-CO adduct limit the catalytic efficiency.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.