BaTiO3/BiCoO3的电子结构及光学吸收性能

IF 1.6 4区 化学 Q4 CHEMISTRY, PHYSICAL Surface and Interface Analysis Pub Date : 2023-09-18 DOI:10.1002/sia.7258
Lijing Wei, Ling Pang, Shaoyuan Pang, Jianan Sun, Pan Yang, Jianxin Guo
{"title":"BaTiO3/BiCoO3的电子结构及光学吸收性能","authors":"Lijing Wei, Ling Pang, Shaoyuan Pang, Jianan Sun, Pan Yang, Jianxin Guo","doi":"10.1002/sia.7258","DOIUrl":null,"url":null,"abstract":"In this paper, we calculated the different forms of BaTiO 3 /BiCoO 3 composite structure, predicting their visible light absorption performance based on the electronic structure using the first principles calculations. Firstly, six possible compounds that come from BaTiO 3 and BiCoO 3 were constructed. By calculating the different antiferromagnetic (AFM) structures of strip, columnar, and layered composite structures, it is found that the ground state of the composite structure changes to G‐type AFM structure from C‐type AFM structure of pure BiCoO 3 under the influence of BaTiO 3 . Energy band calculations show that band gaps of three composite structures are smaller than those of pure BaTiO 3 and pure BiCoO 3 . Furthermore, density of states analysis shows that the conduction band minimum (CBM) and valence band maximum (VBM) of three composite structures are mainly from the contribution of Co 3 d and O 2 p . For the characteristic that CBM and VBM of materials come from different atoms, it would reduce the recombination opportunities of electrons and holes and is conducive to the increase of photoelectric conversion efficiency under visible light irradiation. The calculation of optical properties shows that optical absorption coefficients of three composite structures are much larger than that of BaTiO 3 , especially the layered composite structure. There is a high absorption peak near 500 nm of the solar spectral irradiation maximum, which is significantly important to improve the optical energy conversion efficiency of the composite materials. The work provides an effective way for the application of wide band gap ferroelectric materials in ferroelectric photovoltaic.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"224 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic structure and optical absorption property of BaTiO<sub>3</sub>/BiCoO<sub>3</sub>\",\"authors\":\"Lijing Wei, Ling Pang, Shaoyuan Pang, Jianan Sun, Pan Yang, Jianxin Guo\",\"doi\":\"10.1002/sia.7258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we calculated the different forms of BaTiO 3 /BiCoO 3 composite structure, predicting their visible light absorption performance based on the electronic structure using the first principles calculations. Firstly, six possible compounds that come from BaTiO 3 and BiCoO 3 were constructed. By calculating the different antiferromagnetic (AFM) structures of strip, columnar, and layered composite structures, it is found that the ground state of the composite structure changes to G‐type AFM structure from C‐type AFM structure of pure BiCoO 3 under the influence of BaTiO 3 . Energy band calculations show that band gaps of three composite structures are smaller than those of pure BaTiO 3 and pure BiCoO 3 . Furthermore, density of states analysis shows that the conduction band minimum (CBM) and valence band maximum (VBM) of three composite structures are mainly from the contribution of Co 3 d and O 2 p . For the characteristic that CBM and VBM of materials come from different atoms, it would reduce the recombination opportunities of electrons and holes and is conducive to the increase of photoelectric conversion efficiency under visible light irradiation. The calculation of optical properties shows that optical absorption coefficients of three composite structures are much larger than that of BaTiO 3 , especially the layered composite structure. There is a high absorption peak near 500 nm of the solar spectral irradiation maximum, which is significantly important to improve the optical energy conversion efficiency of the composite materials. The work provides an effective way for the application of wide band gap ferroelectric materials in ferroelectric photovoltaic.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7258\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sia.7258","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文计算了不同形式的batio3 / bico3复合材料结构,利用第一性原理计算预测了其基于电子结构的可见光吸收性能。首先,构建了6个可能来源于batio3和batio3的化合物。通过计算条状、柱状和层状复合结构的不同反铁磁(AFM)结构,发现在batio3的影响下,复合结构的基态由纯bico3的C型AFM结构转变为G型AFM结构。能带计算表明,三种复合结构的能带隙均小于纯batio3和纯batio3。此外,态密度分析表明,三种复合结构的导带最小值(CBM)和价带最大值(VBM)主要来自于Co 3 d和O 2 p的贡献。由于材料的CBM和VBM来自不同原子的特性,减少了电子和空穴的复合机会,有利于可见光照射下光电转换效率的提高。光学性质的计算表明,三种复合结构的光学吸收系数都远大于batio3,尤其是层状复合结构。在太阳光谱辐照最大值500 nm附近存在一个高吸收峰,这对提高复合材料的光能转换效率具有重要意义。该工作为宽带隙铁电材料在铁电光伏中的应用提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electronic structure and optical absorption property of BaTiO3/BiCoO3
In this paper, we calculated the different forms of BaTiO 3 /BiCoO 3 composite structure, predicting their visible light absorption performance based on the electronic structure using the first principles calculations. Firstly, six possible compounds that come from BaTiO 3 and BiCoO 3 were constructed. By calculating the different antiferromagnetic (AFM) structures of strip, columnar, and layered composite structures, it is found that the ground state of the composite structure changes to G‐type AFM structure from C‐type AFM structure of pure BiCoO 3 under the influence of BaTiO 3 . Energy band calculations show that band gaps of three composite structures are smaller than those of pure BaTiO 3 and pure BiCoO 3 . Furthermore, density of states analysis shows that the conduction band minimum (CBM) and valence band maximum (VBM) of three composite structures are mainly from the contribution of Co 3 d and O 2 p . For the characteristic that CBM and VBM of materials come from different atoms, it would reduce the recombination opportunities of electrons and holes and is conducive to the increase of photoelectric conversion efficiency under visible light irradiation. The calculation of optical properties shows that optical absorption coefficients of three composite structures are much larger than that of BaTiO 3 , especially the layered composite structure. There is a high absorption peak near 500 nm of the solar spectral irradiation maximum, which is significantly important to improve the optical energy conversion efficiency of the composite materials. The work provides an effective way for the application of wide band gap ferroelectric materials in ferroelectric photovoltaic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface and Interface Analysis
Surface and Interface Analysis 化学-物理化学
CiteScore
3.30
自引率
5.90%
发文量
130
审稿时长
4.4 months
期刊介绍: Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).
期刊最新文献
Effect of Surface Dissolution on the Floatability of Brucite in Three Anionic Collector Systems Preparation and Properties of Mo/Ti/Sn Conductivity Conversion Coatings on 6063 Aluminum Alloy Nanosilicon Stabilized With Ligands: Effect of High‐Energy Proton Beam on Luminescent Properties Structural Analysis and Electrical Property of Acid‐Treated MWCNT Combined Experimental and Periodic DFT Study of the Size Dependence of Adsorption Properties of Oxide‐Supported Metal Nanoclusters: A Case of NO on Ni/Al2O3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1