二维石墨烯基光催化剂处理有机废水的研究进展

Kelvert Kong, Zhiying Zhu, Mukhamad Nurhadi, Sumari Sumari, Siew Fan Wong, Sin Yuan Lai
{"title":"二维石墨烯基光催化剂处理有机废水的研究进展","authors":"Kelvert Kong, Zhiying Zhu, Mukhamad Nurhadi, Sumari Sumari, Siew Fan Wong, Sin Yuan Lai","doi":"10.9767/bcrec.20029","DOIUrl":null,"url":null,"abstract":"Photocatalysts have gained enormous attention in water decontamination due to their economic viable and intriguing properties. Recently, graphene-based semiconductors have become the sparkling star on the horizon of material science. The coupling of two-dimensional graphene and its derivatives (graphene oxide and reduced graphene oxide) with semiconductors could effectively enhance the efficiency in organic wastewater degradation under light irradiation. Hence, a collective study on this topic is necessary. Four types of graphene-based semiconductors, viz. titania, zinc oxide, cadmium sulfide, and bismuth oxychloride, are explored. Besides, synthesis approaches and properties of these photocatalysts are elucidated too. We hope this review could enable us to rationally design and harness the morphology, structure and electronic properties of these advanced materials. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":9329,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic Wastewater Treatment using Two-dimensional Graphene-based Photocatalysts: A Review\",\"authors\":\"Kelvert Kong, Zhiying Zhu, Mukhamad Nurhadi, Sumari Sumari, Siew Fan Wong, Sin Yuan Lai\",\"doi\":\"10.9767/bcrec.20029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalysts have gained enormous attention in water decontamination due to their economic viable and intriguing properties. Recently, graphene-based semiconductors have become the sparkling star on the horizon of material science. The coupling of two-dimensional graphene and its derivatives (graphene oxide and reduced graphene oxide) with semiconductors could effectively enhance the efficiency in organic wastewater degradation under light irradiation. Hence, a collective study on this topic is necessary. Four types of graphene-based semiconductors, viz. titania, zinc oxide, cadmium sulfide, and bismuth oxychloride, are explored. Besides, synthesis approaches and properties of these photocatalysts are elucidated too. We hope this review could enable us to rationally design and harness the morphology, structure and electronic properties of these advanced materials. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).\",\"PeriodicalId\":9329,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.20029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.20029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光催化剂以其经济可行和令人感兴趣的特性在水净化中得到了广泛的关注。近年来,石墨烯基半导体成为材料科学领域的一颗闪亮的明星。二维石墨烯及其衍生物(氧化石墨烯和还原氧化石墨烯)与半导体的耦合可以有效地提高光照射下有机废水的降解效率。因此,有必要对这一主题进行集体研究。四种类型的石墨烯基半导体,即二氧化钛,氧化锌,硫化镉和氯化铋,进行了探索。此外,还介绍了这些光催化剂的合成方法和性能。我们希望这一综述能够使我们合理地设计和利用这些先进材料的形态、结构和电子性能。版权所有©2023作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organic Wastewater Treatment using Two-dimensional Graphene-based Photocatalysts: A Review
Photocatalysts have gained enormous attention in water decontamination due to their economic viable and intriguing properties. Recently, graphene-based semiconductors have become the sparkling star on the horizon of material science. The coupling of two-dimensional graphene and its derivatives (graphene oxide and reduced graphene oxide) with semiconductors could effectively enhance the efficiency in organic wastewater degradation under light irradiation. Hence, a collective study on this topic is necessary. Four types of graphene-based semiconductors, viz. titania, zinc oxide, cadmium sulfide, and bismuth oxychloride, are explored. Besides, synthesis approaches and properties of these photocatalysts are elucidated too. We hope this review could enable us to rationally design and harness the morphology, structure and electronic properties of these advanced materials. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of W-Doped TiO2 Material Ratio Using One-Step Solvothermal Method and Treatment Orientation of Volatile Organic Compounds Preparation, Characterization, and Photocatalytic Activity of Ni-Cd/Al2O3 Composite Catalyst Kinetic Study of the Aluminum–water Reaction Using NaOH/NaAlO2 Catalyst for Hydrogen Production from Aluminum Cans Waste Synthesis of ZnO/NiO/g-C3N4 Nanocomposite Materials for Photocatalytic Degradation of Tetracycline Antibiotic Ag-TiO2 for Efficient Methylene Blue Photodegradation Under Visible Light Irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1