心血管微波天线设计:平衡与不平衡微波消融天线的比较

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2023-10-26 DOI:10.1109/JERM.2023.3322565
Edward Yang;Urja Patel;Michael Anthony Barry;Alistair McEwan;Pierre C Qian
{"title":"心血管微波天线设计:平衡与不平衡微波消融天线的比较","authors":"Edward Yang;Urja Patel;Michael Anthony Barry;Alistair McEwan;Pierre C Qian","doi":"10.1109/JERM.2023.3322565","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i>\n To determine whether an irrigatedunbalanced antenna can create larger ablations than a conventional microwave antenna without overheating. \n<italic>Method:</i>\n The microwave and ablation characteristics of a previously published multi-ring slot array (MRSA) ablation antenna, optimized for intravascular environments, were compared with a dielectric-insulated monopole antenna with no matching or balancing elements, creating the unbalanced monopole antenna. The two antennae were numerically simulated in an intravascular environment and tested inside a gel phantom for five repetitions for comparison. Each antenna assembly was \n<inline-formula><tex-math>$\\text{900 mm}$</tex-math></inline-formula>\n long, with a \n<inline-formula><tex-math>$\\text{2.45 GHz}$</tex-math></inline-formula>\n ablatingfrequency, with a microwave input power of \n<inline-formula><tex-math>$\\text{60 W}$</tex-math></inline-formula>\n for \n<inline-formula><tex-math>$\\text{120 s}$</tex-math></inline-formula>\n via a patient cable. \n<italic>Results:</i>\n Gel experiments were consistent with numerical simulations, with the unbalanced monopole antenna possessing better microwave and ablative characteristics than the MRSA in a biological environment. Microwave input power to the device connector was attenuated from \n<inline-formula><tex-math>$\\text{60 W}$</tex-math></inline-formula>\n to \n<inline-formula><tex-math>$\\text{40 W}$</tex-math></inline-formula>\n due to patient cable losses. Removing matching elements improved input impedance at the test plane (Real, 52.20 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n \n<inline-formula><tex-math>$5.90 \\;\\Omega$</tex-math></inline-formula>\n vs. 74.22 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n \n<inline-formula><tex-math>$43.25 \\;\\Omega$</tex-math></inline-formula>\n, p = 0.05648; Imaginary, −23.50 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n \n<inline-formula><tex-math>$2.63 \\;\\Omega$</tex-math></inline-formula>\n vs. 14.92 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n \n<inline-formula><tex-math>$51.10 \\;\\Omega$</tex-math></inline-formula>\n, p = 0.1333) and the return loss (−12.79 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n \n<inline-formula><tex-math>$\\text{0.45 dB}$</tex-math></inline-formula>\n vs. 6.51 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n \n<inline-formula><tex-math>$\\text{0.25 dB}$</tex-math></inline-formula>\n, p = \n<inline-formula><tex-math>$2.521 \\times 10^{-7}$</tex-math></inline-formula>\n). The unbalanced monopole antenna created wide (18.28 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n \n<inline-formula><tex-math>$\\text{0.57 mm}$</tex-math></inline-formula>\n vs. 13.38 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n \n<inline-formula><tex-math>$\\text{0.60 mm}$</tex-math></inline-formula>\n, p = \n<inline-formula><tex-math>$2.482 \\times 10^{-5}$</tex-math></inline-formula>\n) and deeper (11.87 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n \n<inline-formula><tex-math>$\\text{0.88 mm}$</tex-math></inline-formula>\n vs. 9.41 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n \n<inline-formula><tex-math>$\\text{0.98 mm}$</tex-math></inline-formula>\n, p = \n<inline-formula><tex-math>$1.616 \\times 10^{-2}$</tex-math></inline-formula>\n) ablation lesions than the MRSA. \n<italic>Clinical Impact:</i>\n Removing elements from an MRSA created an unbalanced monopole antenna that creates larger ablation lesions with improved microwave characteristics.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 4","pages":"450-456"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave Antenna Design for Cardiovascular Applications: A Comparison Between a Balanced and Unbalanced Microwave Ablation Antenna\",\"authors\":\"Edward Yang;Urja Patel;Michael Anthony Barry;Alistair McEwan;Pierre C Qian\",\"doi\":\"10.1109/JERM.2023.3322565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Objective:</i>\\n To determine whether an irrigatedunbalanced antenna can create larger ablations than a conventional microwave antenna without overheating. \\n<italic>Method:</i>\\n The microwave and ablation characteristics of a previously published multi-ring slot array (MRSA) ablation antenna, optimized for intravascular environments, were compared with a dielectric-insulated monopole antenna with no matching or balancing elements, creating the unbalanced monopole antenna. The two antennae were numerically simulated in an intravascular environment and tested inside a gel phantom for five repetitions for comparison. Each antenna assembly was \\n<inline-formula><tex-math>$\\\\text{900 mm}$</tex-math></inline-formula>\\n long, with a \\n<inline-formula><tex-math>$\\\\text{2.45 GHz}$</tex-math></inline-formula>\\n ablatingfrequency, with a microwave input power of \\n<inline-formula><tex-math>$\\\\text{60 W}$</tex-math></inline-formula>\\n for \\n<inline-formula><tex-math>$\\\\text{120 s}$</tex-math></inline-formula>\\n via a patient cable. \\n<italic>Results:</i>\\n Gel experiments were consistent with numerical simulations, with the unbalanced monopole antenna possessing better microwave and ablative characteristics than the MRSA in a biological environment. Microwave input power to the device connector was attenuated from \\n<inline-formula><tex-math>$\\\\text{60 W}$</tex-math></inline-formula>\\n to \\n<inline-formula><tex-math>$\\\\text{40 W}$</tex-math></inline-formula>\\n due to patient cable losses. Removing matching elements improved input impedance at the test plane (Real, 52.20 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n \\n<inline-formula><tex-math>$5.90 \\\\;\\\\Omega$</tex-math></inline-formula>\\n vs. 74.22 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n \\n<inline-formula><tex-math>$43.25 \\\\;\\\\Omega$</tex-math></inline-formula>\\n, p = 0.05648; Imaginary, −23.50 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n \\n<inline-formula><tex-math>$2.63 \\\\;\\\\Omega$</tex-math></inline-formula>\\n vs. 14.92 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n \\n<inline-formula><tex-math>$51.10 \\\\;\\\\Omega$</tex-math></inline-formula>\\n, p = 0.1333) and the return loss (−12.79 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n \\n<inline-formula><tex-math>$\\\\text{0.45 dB}$</tex-math></inline-formula>\\n vs. 6.51 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n \\n<inline-formula><tex-math>$\\\\text{0.25 dB}$</tex-math></inline-formula>\\n, p = \\n<inline-formula><tex-math>$2.521 \\\\times 10^{-7}$</tex-math></inline-formula>\\n). The unbalanced monopole antenna created wide (18.28 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n \\n<inline-formula><tex-math>$\\\\text{0.57 mm}$</tex-math></inline-formula>\\n vs. 13.38 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n \\n<inline-formula><tex-math>$\\\\text{0.60 mm}$</tex-math></inline-formula>\\n, p = \\n<inline-formula><tex-math>$2.482 \\\\times 10^{-5}$</tex-math></inline-formula>\\n) and deeper (11.87 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n \\n<inline-formula><tex-math>$\\\\text{0.88 mm}$</tex-math></inline-formula>\\n vs. 9.41 \\n<inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>\\n \\n<inline-formula><tex-math>$\\\\text{0.98 mm}$</tex-math></inline-formula>\\n, p = \\n<inline-formula><tex-math>$1.616 \\\\times 10^{-2}$</tex-math></inline-formula>\\n) ablation lesions than the MRSA. \\n<italic>Clinical Impact:</i>\\n Removing elements from an MRSA created an unbalanced monopole antenna that creates larger ablation lesions with improved microwave characteristics.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"7 4\",\"pages\":\"450-456\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10297568/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10297568/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

目的:确定灌溉不平衡天线是否能在不过热的情况下比传统微波天线产生更大的烧蚀。方法:将先前发表的针对血管内环境优化的多环缝隙阵列(MRSA)消融天线的微波和消融特性与没有匹配或平衡元件的介电绝缘单极子天线进行比较,从而产生不平衡单极子天线。这两个天线在血管内环境中进行了数值模拟,并在凝胶幻影中进行了五次重复的测试以进行比较。每个天线组件长900毫米,烧蚀频率为2.45 GHz,微波输入功率为60瓦,通过病人电缆输入120秒。结果:凝胶实验与数值模拟结果一致,非平衡单极天线在生物环境下比MRSA具有更好的微波和烧蚀特性。由于患者电缆损耗,设备连接器的微波输入功率从$\text{60 W}$衰减到$\text{40 W}$。去除匹配元件改善了测试平面的输入阻抗(Real, 52.20 $\pm$ $5.90 \;\Omega$ vs. 74.22 $\pm$ $43.25 \;\Omega$, p = 0.05648;虚,−23.50下午\ $ 2.63美元\;下午\ω$ 14.92和$ \ \ $ 51.10美元,美元\ω,p = 0.1333)和回波损耗(−12.79 $ $ $ \ \点文本{0.45 dB} $ 6.51和$ $ $ \ \点文本{0.25 dB} $ p = 2.521美元\ * 10 ^{7}$)。与MRSA相比,非平衡单极天线产生了更宽(18.28 $\pm$ $\text{0.57 mm}$ vs. 13.38 $ $ $ $\text{0.60 mm}$, p = 2.482 \ × 10^{-5}$)和更深(11.87 $ $\pm$ $ $\text{0.88 mm}$ vs. 9.41 $ $\pm$ $ $\text{0.98 mm}$, p = 1.616 \ × 10^{-2}$)的消融病变。临床影响:从MRSA中去除元件会产生不平衡的单极天线,从而产生更大的消融病灶,并改善微波特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microwave Antenna Design for Cardiovascular Applications: A Comparison Between a Balanced and Unbalanced Microwave Ablation Antenna
Objective: To determine whether an irrigatedunbalanced antenna can create larger ablations than a conventional microwave antenna without overheating. Method: The microwave and ablation characteristics of a previously published multi-ring slot array (MRSA) ablation antenna, optimized for intravascular environments, were compared with a dielectric-insulated monopole antenna with no matching or balancing elements, creating the unbalanced monopole antenna. The two antennae were numerically simulated in an intravascular environment and tested inside a gel phantom for five repetitions for comparison. Each antenna assembly was $\text{900 mm}$ long, with a $\text{2.45 GHz}$ ablatingfrequency, with a microwave input power of $\text{60 W}$ for $\text{120 s}$ via a patient cable. Results: Gel experiments were consistent with numerical simulations, with the unbalanced monopole antenna possessing better microwave and ablative characteristics than the MRSA in a biological environment. Microwave input power to the device connector was attenuated from $\text{60 W}$ to $\text{40 W}$ due to patient cable losses. Removing matching elements improved input impedance at the test plane (Real, 52.20 $\pm$ $5.90 \;\Omega$ vs. 74.22 $\pm$ $43.25 \;\Omega$ , p = 0.05648; Imaginary, −23.50 $\pm$ $2.63 \;\Omega$ vs. 14.92 $\pm$ $51.10 \;\Omega$ , p = 0.1333) and the return loss (−12.79 $\pm$ $\text{0.45 dB}$ vs. 6.51 $\pm$ $\text{0.25 dB}$ , p = $2.521 \times 10^{-7}$ ). The unbalanced monopole antenna created wide (18.28 $\pm$ $\text{0.57 mm}$ vs. 13.38 $\pm$ $\text{0.60 mm}$ , p = $2.482 \times 10^{-5}$ ) and deeper (11.87 $\pm$ $\text{0.88 mm}$ vs. 9.41 $\pm$ $\text{0.98 mm}$ , p = $1.616 \times 10^{-2}$ ) ablation lesions than the MRSA. Clinical Impact: Removing elements from an MRSA created an unbalanced monopole antenna that creates larger ablation lesions with improved microwave characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
期刊最新文献
2024 Index IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Vol. 8 Front Cover Table of Contents IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1