{"title":"基于CNTFET的电流模式逻辑分析与设计","authors":"Gennaro Gelao, Roberto Marani, Anna Gina Perri","doi":"10.3934/matersci.2023052","DOIUrl":null,"url":null,"abstract":"<abstract> <p>In this letter we present a current mode gate based on differential pair as an application of carbon nanotube field effect transistors (CNTFETs). The proposed circuit has two output logic gates: one is NAND, and the other is AND. To simplify the circuit realization we use all CNTFETs of the same type, all with the same lengths and carbon nanotube symmetry indices (n, m). Complex circuits could be obtained in current mode replicating the differential pair CNTFET along the current path. The proposed procedure allows simulation of transfer characteristics from voltage input to current output but also from voltage input to voltage output. Moreover, we can measure simulated power dissipation and delay times.</p> </abstract>","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"19 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and design of current mode logic based on CNTFET\",\"authors\":\"Gennaro Gelao, Roberto Marani, Anna Gina Perri\",\"doi\":\"10.3934/matersci.2023052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract> <p>In this letter we present a current mode gate based on differential pair as an application of carbon nanotube field effect transistors (CNTFETs). The proposed circuit has two output logic gates: one is NAND, and the other is AND. To simplify the circuit realization we use all CNTFETs of the same type, all with the same lengths and carbon nanotube symmetry indices (n, m). Complex circuits could be obtained in current mode replicating the differential pair CNTFET along the current path. The proposed procedure allows simulation of transfer characteristics from voltage input to current output but also from voltage input to voltage output. Moreover, we can measure simulated power dissipation and delay times.</p> </abstract>\",\"PeriodicalId\":7670,\"journal\":{\"name\":\"AIMS Materials Science\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/matersci.2023052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2023052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis and design of current mode logic based on CNTFET
In this letter we present a current mode gate based on differential pair as an application of carbon nanotube field effect transistors (CNTFETs). The proposed circuit has two output logic gates: one is NAND, and the other is AND. To simplify the circuit realization we use all CNTFETs of the same type, all with the same lengths and carbon nanotube symmetry indices (n, m). Complex circuits could be obtained in current mode replicating the differential pair CNTFET along the current path. The proposed procedure allows simulation of transfer characteristics from voltage input to current output but also from voltage input to voltage output. Moreover, we can measure simulated power dissipation and delay times.
期刊介绍:
AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.