三维-二维集成建模方法在美国西部地下煤矿矿柱支护设计中的应用

IF 2.4 Q2 GEOSCIENCES, MULTIDISCIPLINARY Geosciences (Switzerland) Pub Date : 2023-11-01 DOI:10.3390/geosciences13110333
Sankhaneel Sinha, Gabriel Walton
{"title":"三维-二维集成建模方法在美国西部地下煤矿矿柱支护设计中的应用","authors":"Sankhaneel Sinha, Gabriel Walton","doi":"10.3390/geosciences13110333","DOIUrl":null,"url":null,"abstract":"Discontinuum Bonded Block Modeling (BBM) represents a potential tool for support design, as these models can reproduce both the rock fracturing process and the influence of reinforcement on unsupported ground. Despite their strengths, discontinuum models are seldom used for mining design due to their computationally intensive nature. This study is an application of an integrated 3D continuum–2D discontinuum approach, in which the mine-wide stress distribution process is modeled using a continuum software, and the local deformation behavior in response to a strain path from the continuum model is simulated with a 2D discontinuum software. In June 2017, two multi-point borehole extensometers were installed in a longwall chain pillar to record ground displacements as a function of the longwall face position. The data from one of the extensometers were employed to calibrate a panel-scale FLAC3D model. The boundary conditions along the pillar slice containing the extensometer were extracted from the FLAC3D model and applied to a 2D BBM, and the input parameters were modified to match the extensometer data. The calibrated BBM was able to reproduce the unsupported rib deformation and depth of the fracturing well. Subsequently, a few support schemes were tested to demonstrate how the incorporation of support might affect rib deformation.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of an Integrated 3D–2D Modeling Approach for Pillar Support Design in a Western US Underground Coal Mine\",\"authors\":\"Sankhaneel Sinha, Gabriel Walton\",\"doi\":\"10.3390/geosciences13110333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discontinuum Bonded Block Modeling (BBM) represents a potential tool for support design, as these models can reproduce both the rock fracturing process and the influence of reinforcement on unsupported ground. Despite their strengths, discontinuum models are seldom used for mining design due to their computationally intensive nature. This study is an application of an integrated 3D continuum–2D discontinuum approach, in which the mine-wide stress distribution process is modeled using a continuum software, and the local deformation behavior in response to a strain path from the continuum model is simulated with a 2D discontinuum software. In June 2017, two multi-point borehole extensometers were installed in a longwall chain pillar to record ground displacements as a function of the longwall face position. The data from one of the extensometers were employed to calibrate a panel-scale FLAC3D model. The boundary conditions along the pillar slice containing the extensometer were extracted from the FLAC3D model and applied to a 2D BBM, and the input parameters were modified to match the extensometer data. The calibrated BBM was able to reproduce the unsupported rib deformation and depth of the fracturing well. Subsequently, a few support schemes were tested to demonstrate how the incorporation of support might affect rib deformation.\",\"PeriodicalId\":38189,\"journal\":{\"name\":\"Geosciences (Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosciences (Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geosciences13110333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosciences (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geosciences13110333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非连续体粘结块模型(BBM)是一种潜在的支护设计工具,因为这些模型可以重现岩石破裂过程和加固对无支护地面的影响。尽管非连续体模型有其优点,但由于其计算强度大,很少用于采矿设计。本研究采用三维连续-二维非连续统一体方法,利用连续统一体软件模拟全矿区应力分布过程,利用二维非连续统一体软件模拟连续统一体模型应变路径下的局部变形行为。2017年6月,在长壁链柱上安装了两个多点钻孔延伸计,以记录地面位移作为长壁工作面位置的函数。利用其中一个伸缩仪的数据校准面板尺度FLAC3D模型。从FLAC3D模型中提取包含延伸计的柱状切片的边界条件,并将其应用于二维BBM,并修改输入参数以匹配延伸计数据。校准后的BBM能够重现无支撑肋的变形和压裂井的深度。随后,对几种支持方案进行了测试,以证明支持的加入如何影响肋变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of an Integrated 3D–2D Modeling Approach for Pillar Support Design in a Western US Underground Coal Mine
Discontinuum Bonded Block Modeling (BBM) represents a potential tool for support design, as these models can reproduce both the rock fracturing process and the influence of reinforcement on unsupported ground. Despite their strengths, discontinuum models are seldom used for mining design due to their computationally intensive nature. This study is an application of an integrated 3D continuum–2D discontinuum approach, in which the mine-wide stress distribution process is modeled using a continuum software, and the local deformation behavior in response to a strain path from the continuum model is simulated with a 2D discontinuum software. In June 2017, two multi-point borehole extensometers were installed in a longwall chain pillar to record ground displacements as a function of the longwall face position. The data from one of the extensometers were employed to calibrate a panel-scale FLAC3D model. The boundary conditions along the pillar slice containing the extensometer were extracted from the FLAC3D model and applied to a 2D BBM, and the input parameters were modified to match the extensometer data. The calibrated BBM was able to reproduce the unsupported rib deformation and depth of the fracturing well. Subsequently, a few support schemes were tested to demonstrate how the incorporation of support might affect rib deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geosciences (Switzerland)
Geosciences (Switzerland) Earth and Planetary Sciences-Earth and Planetary Sciences (all)
CiteScore
5.30
自引率
7.40%
发文量
395
审稿时长
11 weeks
期刊最新文献
Comparison of Rating Systems for Alberta Rock Slopes, and Assessment of Applicability for Geotechnical Asset Management Thermal Conductivity of Frozen and Unfrozen Gas-Saturated Soils Heterogeneities in the Cohesion of the Deposits of the 2021 Tajogaite Eruption of La Palma (Canary Islands, Spain) Understanding the Deep Structure of the Essaouira Basin Using Gravity Data: Hydrogeological Inferences for a Semiarid Region in Central-Western Morocco Using Electrical Resistivity Tomography Method to Determine the Inner 3D Geometry and the Main Runoff Directions of the Large Active Landslide of Pie de Cuesta in the Vítor Valley (Peru)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1