Marco Umberto Scaramozzino, Sapone Giovanni, Ubaldo Romeo Plastina, Guido Levi.
{"title":"无线技术在纤维化患者中的胸部检查:一个试点病例报告","authors":"Marco Umberto Scaramozzino, Sapone Giovanni, Ubaldo Romeo Plastina, Guido Levi.","doi":"10.18535/ijmsci/v10i4.06","DOIUrl":null,"url":null,"abstract":"Physicians use auscultation as a standard method of thoracic examination: it is simple, reliable, non-invasive, and widely accepted. Artificial intelligence (AI) is the new frontier of thoracic examination as it makes it possible to integrate all available data (clinical, instrumental, laboratory, functional), allowing for objective assessments, precise diagnoses, and even the phenotypical characterization of lung diseases. Increasing the sensitivity and specificity of examinations helps provide tailored diagnostic and therapeutic indications, which also take into account the patient's clinical history and comorbidities.
 Several clinical studies, mainly conducted in children, have shown a good concordance between traditional and AI-assisted auscultation in detecting fibrotic diseases. On the other hand, the use of AI for the diagnosis of obstructive pulmonary disease is still debated as it gave inconsistent results when detecting certain types of lung noises, such as wet and dry crackles. Therefore, the application of AI in clinical practice needs further investigation.
 In the case we present, data integration allowed us to make the right diagnosis, avoid invasive procedures, and reduce the costs for the national health system; we show that integrating technologies can improve the diagnosis of restrictive lung disease. Randomized controlled trials will be needed to confirm the conclusions of this preliminary work.
","PeriodicalId":14151,"journal":{"name":"International Journal Of Medical Science And Clinical Invention","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chest Examination with Wireless Technology in a Patient with Fibrotic Disease: A Pilot Case Report\",\"authors\":\"Marco Umberto Scaramozzino, Sapone Giovanni, Ubaldo Romeo Plastina, Guido Levi.\",\"doi\":\"10.18535/ijmsci/v10i4.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physicians use auscultation as a standard method of thoracic examination: it is simple, reliable, non-invasive, and widely accepted. Artificial intelligence (AI) is the new frontier of thoracic examination as it makes it possible to integrate all available data (clinical, instrumental, laboratory, functional), allowing for objective assessments, precise diagnoses, and even the phenotypical characterization of lung diseases. Increasing the sensitivity and specificity of examinations helps provide tailored diagnostic and therapeutic indications, which also take into account the patient's clinical history and comorbidities.
 Several clinical studies, mainly conducted in children, have shown a good concordance between traditional and AI-assisted auscultation in detecting fibrotic diseases. On the other hand, the use of AI for the diagnosis of obstructive pulmonary disease is still debated as it gave inconsistent results when detecting certain types of lung noises, such as wet and dry crackles. Therefore, the application of AI in clinical practice needs further investigation.
 In the case we present, data integration allowed us to make the right diagnosis, avoid invasive procedures, and reduce the costs for the national health system; we show that integrating technologies can improve the diagnosis of restrictive lung disease. Randomized controlled trials will be needed to confirm the conclusions of this preliminary work.
\",\"PeriodicalId\":14151,\"journal\":{\"name\":\"International Journal Of Medical Science And Clinical Invention\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal Of Medical Science And Clinical Invention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18535/ijmsci/v10i4.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Of Medical Science And Clinical Invention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/ijmsci/v10i4.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chest Examination with Wireless Technology in a Patient with Fibrotic Disease: A Pilot Case Report
Physicians use auscultation as a standard method of thoracic examination: it is simple, reliable, non-invasive, and widely accepted. Artificial intelligence (AI) is the new frontier of thoracic examination as it makes it possible to integrate all available data (clinical, instrumental, laboratory, functional), allowing for objective assessments, precise diagnoses, and even the phenotypical characterization of lung diseases. Increasing the sensitivity and specificity of examinations helps provide tailored diagnostic and therapeutic indications, which also take into account the patient's clinical history and comorbidities.
Several clinical studies, mainly conducted in children, have shown a good concordance between traditional and AI-assisted auscultation in detecting fibrotic diseases. On the other hand, the use of AI for the diagnosis of obstructive pulmonary disease is still debated as it gave inconsistent results when detecting certain types of lung noises, such as wet and dry crackles. Therefore, the application of AI in clinical practice needs further investigation.
In the case we present, data integration allowed us to make the right diagnosis, avoid invasive procedures, and reduce the costs for the national health system; we show that integrating technologies can improve the diagnosis of restrictive lung disease. Randomized controlled trials will be needed to confirm the conclusions of this preliminary work.