{"title":"ClusROC:一个用于聚类数据的三类分类问题的ROC分析的R包","authors":"Duc-Khanh To, Gianfranco Adimari, Monica Chiogna","doi":"10.32614/rj-2023-035","DOIUrl":null,"url":null,"abstract":"This paper introduces an R package for ROC analysis in three-class classification problems, for clustered data in the presence of covariates, named ClusROC. The clustered data that we address have some hierarchical structure, i.e., dependent data deriving, for example, from longitudinal studies or repeated measurements. This package implements point and interval covariate-specific estimation of the true class fractions at a fixed pair of thresholds, the ROC surface, the volume under the ROC surface, and the optimal pairs of thresholds. We illustrate the usage of the implemented functions through two practical examples from different fields of research.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"69 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ClusROC: An R Package for ROC Analysis in Three-Class Classification Problems for Clustered Data\",\"authors\":\"Duc-Khanh To, Gianfranco Adimari, Monica Chiogna\",\"doi\":\"10.32614/rj-2023-035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an R package for ROC analysis in three-class classification problems, for clustered data in the presence of covariates, named ClusROC. The clustered data that we address have some hierarchical structure, i.e., dependent data deriving, for example, from longitudinal studies or repeated measurements. This package implements point and interval covariate-specific estimation of the true class fractions at a fixed pair of thresholds, the ROC surface, the volume under the ROC surface, and the optimal pairs of thresholds. We illustrate the usage of the implemented functions through two practical examples from different fields of research.\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-035\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
ClusROC: An R Package for ROC Analysis in Three-Class Classification Problems for Clustered Data
This paper introduces an R package for ROC analysis in three-class classification problems, for clustered data in the presence of covariates, named ClusROC. The clustered data that we address have some hierarchical structure, i.e., dependent data deriving, for example, from longitudinal studies or repeated measurements. This package implements point and interval covariate-specific estimation of the true class fractions at a fixed pair of thresholds, the ROC surface, the volume under the ROC surface, and the optimal pairs of thresholds. We illustrate the usage of the implemented functions through two practical examples from different fields of research.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.