非线性混合效应模型的可视化模型诊断

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS R Journal Pub Date : 2023-08-26 DOI:10.32614/rj-2023-026
Eun-Hwa Kang, Myungji Ko, Eun-Kyung Lee
{"title":"非线性混合效应模型的可视化模型诊断","authors":"Eun-Hwa Kang, Myungji Ko, Eun-Kyung Lee","doi":"10.32614/rj-2023-026","DOIUrl":null,"url":null,"abstract":"A nonlinear mixed effects model is useful when the data are repeatedly measured within the same unit or correlated between units. Such models are widely used in medicine, disease mechanics, pharmacology, ecology, social science, psychology, etc. After fitting the nonlinear mixed effect model, model diagnostics are essential for verifying that the results are reliable. The visual predictive check (VPC) has recently been highlighted as a visual diagnostic tool for pharmacometric models. This method can also be applied to general nonlinear mixed effects models. However, functions for VPCs in existing R packages are specialized for pharmacometric model diagnosis, and are not suitable for general nonlinear mixed effect models. In this paper, we propose nlmeVPC, an R package for the visual diagnosis of various nonlinear mixed effect models. The nlmeVPC package allows for more diverse model diagnostics, including visual diagnostic tools that extend the concept of VPCs along with the capabilities of existing R packages.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"40 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"nlmeVPC: Visual Model Diagnosis for the Nonlinear Mixed Effect Model\",\"authors\":\"Eun-Hwa Kang, Myungji Ko, Eun-Kyung Lee\",\"doi\":\"10.32614/rj-2023-026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonlinear mixed effects model is useful when the data are repeatedly measured within the same unit or correlated between units. Such models are widely used in medicine, disease mechanics, pharmacology, ecology, social science, psychology, etc. After fitting the nonlinear mixed effect model, model diagnostics are essential for verifying that the results are reliable. The visual predictive check (VPC) has recently been highlighted as a visual diagnostic tool for pharmacometric models. This method can also be applied to general nonlinear mixed effects models. However, functions for VPCs in existing R packages are specialized for pharmacometric model diagnosis, and are not suitable for general nonlinear mixed effect models. In this paper, we propose nlmeVPC, an R package for the visual diagnosis of various nonlinear mixed effect models. The nlmeVPC package allows for more diverse model diagnostics, including visual diagnostic tools that extend the concept of VPCs along with the capabilities of existing R packages.\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-026\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-026","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

当数据在同一单位内重复测量或在单位间相互关联时,非线性混合效应模型是有用的。这些模型广泛应用于医学、疾病力学、药理学、生态学、社会科学、心理学等领域。对非线性混合效应模型进行拟合后,模型诊断是验证拟合结果可靠性的关键。视觉预测检查(VPC)最近被强调为药物计量模型的视觉诊断工具。该方法也适用于一般的非线性混合效应模型。然而,现有R包中针对vpc的功能是专门用于药物计量模型诊断的,并不适合一般的非线性混合效应模型。在本文中,我们提出了nlmeVPC,一个R包,用于各种非线性混合效应模型的视觉诊断。nlmeVPC包允许更多样化的模型诊断,包括可视化诊断工具,它扩展了vpc的概念以及现有R包的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
nlmeVPC: Visual Model Diagnosis for the Nonlinear Mixed Effect Model
A nonlinear mixed effects model is useful when the data are repeatedly measured within the same unit or correlated between units. Such models are widely used in medicine, disease mechanics, pharmacology, ecology, social science, psychology, etc. After fitting the nonlinear mixed effect model, model diagnostics are essential for verifying that the results are reliable. The visual predictive check (VPC) has recently been highlighted as a visual diagnostic tool for pharmacometric models. This method can also be applied to general nonlinear mixed effects models. However, functions for VPCs in existing R packages are specialized for pharmacometric model diagnosis, and are not suitable for general nonlinear mixed effect models. In this paper, we propose nlmeVPC, an R package for the visual diagnosis of various nonlinear mixed effect models. The nlmeVPC package allows for more diverse model diagnostics, including visual diagnostic tools that extend the concept of VPCs along with the capabilities of existing R packages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
期刊最新文献
binGroup2: Statistical Tools for Infection Identification via Group Testing. glmmPen: High Dimensional Penalized Generalized Linear Mixed Models. Three-Way Correspondence Analysis in R nlstac: Non-Gradient Separable Nonlinear Least Squares Fitting A Workflow for Estimating and Visualising Excess Mortality During the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1