{"title":"非线性混合效应模型的可视化模型诊断","authors":"Eun-Hwa Kang, Myungji Ko, Eun-Kyung Lee","doi":"10.32614/rj-2023-026","DOIUrl":null,"url":null,"abstract":"A nonlinear mixed effects model is useful when the data are repeatedly measured within the same unit or correlated between units. Such models are widely used in medicine, disease mechanics, pharmacology, ecology, social science, psychology, etc. After fitting the nonlinear mixed effect model, model diagnostics are essential for verifying that the results are reliable. The visual predictive check (VPC) has recently been highlighted as a visual diagnostic tool for pharmacometric models. This method can also be applied to general nonlinear mixed effects models. However, functions for VPCs in existing R packages are specialized for pharmacometric model diagnosis, and are not suitable for general nonlinear mixed effect models. In this paper, we propose nlmeVPC, an R package for the visual diagnosis of various nonlinear mixed effect models. The nlmeVPC package allows for more diverse model diagnostics, including visual diagnostic tools that extend the concept of VPCs along with the capabilities of existing R packages.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"40 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"nlmeVPC: Visual Model Diagnosis for the Nonlinear Mixed Effect Model\",\"authors\":\"Eun-Hwa Kang, Myungji Ko, Eun-Kyung Lee\",\"doi\":\"10.32614/rj-2023-026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonlinear mixed effects model is useful when the data are repeatedly measured within the same unit or correlated between units. Such models are widely used in medicine, disease mechanics, pharmacology, ecology, social science, psychology, etc. After fitting the nonlinear mixed effect model, model diagnostics are essential for verifying that the results are reliable. The visual predictive check (VPC) has recently been highlighted as a visual diagnostic tool for pharmacometric models. This method can also be applied to general nonlinear mixed effects models. However, functions for VPCs in existing R packages are specialized for pharmacometric model diagnosis, and are not suitable for general nonlinear mixed effect models. In this paper, we propose nlmeVPC, an R package for the visual diagnosis of various nonlinear mixed effect models. The nlmeVPC package allows for more diverse model diagnostics, including visual diagnostic tools that extend the concept of VPCs along with the capabilities of existing R packages.\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-026\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-026","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
nlmeVPC: Visual Model Diagnosis for the Nonlinear Mixed Effect Model
A nonlinear mixed effects model is useful when the data are repeatedly measured within the same unit or correlated between units. Such models are widely used in medicine, disease mechanics, pharmacology, ecology, social science, psychology, etc. After fitting the nonlinear mixed effect model, model diagnostics are essential for verifying that the results are reliable. The visual predictive check (VPC) has recently been highlighted as a visual diagnostic tool for pharmacometric models. This method can also be applied to general nonlinear mixed effects models. However, functions for VPCs in existing R packages are specialized for pharmacometric model diagnosis, and are not suitable for general nonlinear mixed effect models. In this paper, we propose nlmeVPC, an R package for the visual diagnosis of various nonlinear mixed effect models. The nlmeVPC package allows for more diverse model diagnostics, including visual diagnostic tools that extend the concept of VPCs along with the capabilities of existing R packages.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.