非平衡有向图非线性分数阶多智能体系统的定时分布时变优化

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Fractal and Fractional Pub Date : 2023-11-09 DOI:10.3390/fractalfract7110813
Kun Wang, Ping Gong, Zhiyao Ma
{"title":"非平衡有向图非线性分数阶多智能体系统的定时分布时变优化","authors":"Kun Wang, Ping Gong, Zhiyao Ma","doi":"10.3390/fractalfract7110813","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of fixed-time distributed time-varying optimization of a nonlinear fractional-order multiagent system (FOMAS) over a weight-unbalanced directed graph (digraph), where the heterogeneous unknown nonlinear functions and disturbances are involved. The aim is to cooperatively minimize a convex time-varying global cost function produced by a sum of time-varying local cost functions within a fixed time, where each time-varying local cost function does not have to be convex. Using a three-step design procedure, a fully distributed fixed-time optimization algorithm is constructed to achieve the objective. The first step is to design a fully distributed fixed-time estimator to estimate some centralized optimization terms within a fixed time T0. The second step is to develop a novel discontinuous fixed-time sliding mode algorithm with nominal controller to derive all the agents to the sliding-mode surface within a fixed time T1, and meanwhile the dynamics of each agent is described by a single-integrator MAS with nominal controller. In the third step, a novel estimator-based fully distributed fixed-time nominal controller for the single-integrator MAS is presented to guarantee all agents reach consensus within a fixed time T2, and afterwards minimize the convex time-varying global cost function within a fixed time T3. The upper bound of each fixed time Tm(m=0,1,2,3) is given explicitly, which is independent of the initial states. Finally, a numerical example is provided to validate the results.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" 3","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed-Time Distributed Time-Varying Optimization for Nonlinear Fractional-Order Multiagent Systems with Unbalanced Digraphs\",\"authors\":\"Kun Wang, Ping Gong, Zhiyao Ma\",\"doi\":\"10.3390/fractalfract7110813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problem of fixed-time distributed time-varying optimization of a nonlinear fractional-order multiagent system (FOMAS) over a weight-unbalanced directed graph (digraph), where the heterogeneous unknown nonlinear functions and disturbances are involved. The aim is to cooperatively minimize a convex time-varying global cost function produced by a sum of time-varying local cost functions within a fixed time, where each time-varying local cost function does not have to be convex. Using a three-step design procedure, a fully distributed fixed-time optimization algorithm is constructed to achieve the objective. The first step is to design a fully distributed fixed-time estimator to estimate some centralized optimization terms within a fixed time T0. The second step is to develop a novel discontinuous fixed-time sliding mode algorithm with nominal controller to derive all the agents to the sliding-mode surface within a fixed time T1, and meanwhile the dynamics of each agent is described by a single-integrator MAS with nominal controller. In the third step, a novel estimator-based fully distributed fixed-time nominal controller for the single-integrator MAS is presented to guarantee all agents reach consensus within a fixed time T2, and afterwards minimize the convex time-varying global cost function within a fixed time T3. The upper bound of each fixed time Tm(m=0,1,2,3) is given explicitly, which is independent of the initial states. Finally, a numerical example is provided to validate the results.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\" 3\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7110813\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110813","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类非线性分数阶多智能体系统在权重不平衡有向图上的固定时间分布时变优化问题,该问题涉及异构未知非线性函数和扰动。目标是在固定时间内,协作最小化由时变局部代价函数和产生的凸时变全局代价函数,其中每个时变局部代价函数不必是凸的。采用三步设计流程,构造了一种全分布式固定时间优化算法。第一步是设计一个完全分布的固定时间估计器,在固定时间T0内估计一些集中的优化项。第二步,提出了一种新的带标称控制器的不连续定时滑模算法,将所有智能体在固定时间T1内导出到滑模表面,同时用带标称控制器的单积分器MAS描述每个智能体的动态。第三步,针对单积分器MAS,提出了一种新的基于估计量的全分布固定时间标称控制器,保证所有智能体在固定时间T2内达成共识,然后在固定时间T3内最小化凸时变全局代价函数。明确给出了每个固定时间Tm(m=0,1,2,3)的上界,它与初始状态无关。最后,通过数值算例验证了计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fixed-Time Distributed Time-Varying Optimization for Nonlinear Fractional-Order Multiagent Systems with Unbalanced Digraphs
This paper investigates the problem of fixed-time distributed time-varying optimization of a nonlinear fractional-order multiagent system (FOMAS) over a weight-unbalanced directed graph (digraph), where the heterogeneous unknown nonlinear functions and disturbances are involved. The aim is to cooperatively minimize a convex time-varying global cost function produced by a sum of time-varying local cost functions within a fixed time, where each time-varying local cost function does not have to be convex. Using a three-step design procedure, a fully distributed fixed-time optimization algorithm is constructed to achieve the objective. The first step is to design a fully distributed fixed-time estimator to estimate some centralized optimization terms within a fixed time T0. The second step is to develop a novel discontinuous fixed-time sliding mode algorithm with nominal controller to derive all the agents to the sliding-mode surface within a fixed time T1, and meanwhile the dynamics of each agent is described by a single-integrator MAS with nominal controller. In the third step, a novel estimator-based fully distributed fixed-time nominal controller for the single-integrator MAS is presented to guarantee all agents reach consensus within a fixed time T2, and afterwards minimize the convex time-varying global cost function within a fixed time T3. The upper bound of each fixed time Tm(m=0,1,2,3) is given explicitly, which is independent of the initial states. Finally, a numerical example is provided to validate the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
期刊最新文献
On the Impacts of the Global Sea Level Dynamics Research on Application of Fractional Calculus Operator in Image Underlying Processing The Multiscale Principle in Nature (Principium luxuriæ): Linking Multiscale Thermodynamics to Living and Non-Living Complex Systems A Numerical Scheme and Application to the Fractional Integro-Differential Equation Using Fixed-Point Techniques Correction: Panchal et al. 3D FEM Simulation and Analysis of Fractal Electrode-Based FBAR Resonator for Tetrachloroethene (PCE) Gas Detection. Fractal Fract. 2022, 6, 491
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1