{"title":"Leon/USP5去泛素酶在泛素-蛋白酶体和自噬途径中的双重功能","authors":"Yuchieh Jay Lin, Guang-Chao Chen","doi":"10.1080/27694127.2023.2278299","DOIUrl":null,"url":null,"abstract":"The ubiquitin-proteasome system (UPS) and autophagy are highly conserved processes that maintain cellular health through the clearance of misfolded/aberrant proteins and damaged organelles. Ubiquitination is a crucial protein modification to regulate entry in these two pathways. However, the function of deubiquitinases (DUBs) in the UPS and autophagy remains largely unclear. The Leon/USP5 deubiquitinase is essential for maintaining ubiquitin homeostasis and proteasome function. In our recent study, we found that Leon/USP5 depletion resulted in the induction of autophagosome formation and an enhancement of the autophagic flux. Additionally, a genetic analysis in Drosophila revealed that Leon overexpression suppressed Atg1-induced cell death. We further showed that Leon/USP5 interacts with the autophagy initiator Atg1/ULK1, regulating its levels and thus modulating autophagosome formation. These findings suggest that Leon/USP5 plays a dual role in regulation of UPS and autophagy.","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":" 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual function of the Leon/USP5 deubiquitinase in the ubiquitin-proteasome and autophagic pathways\",\"authors\":\"Yuchieh Jay Lin, Guang-Chao Chen\",\"doi\":\"10.1080/27694127.2023.2278299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ubiquitin-proteasome system (UPS) and autophagy are highly conserved processes that maintain cellular health through the clearance of misfolded/aberrant proteins and damaged organelles. Ubiquitination is a crucial protein modification to regulate entry in these two pathways. However, the function of deubiquitinases (DUBs) in the UPS and autophagy remains largely unclear. The Leon/USP5 deubiquitinase is essential for maintaining ubiquitin homeostasis and proteasome function. In our recent study, we found that Leon/USP5 depletion resulted in the induction of autophagosome formation and an enhancement of the autophagic flux. Additionally, a genetic analysis in Drosophila revealed that Leon overexpression suppressed Atg1-induced cell death. We further showed that Leon/USP5 interacts with the autophagy initiator Atg1/ULK1, regulating its levels and thus modulating autophagosome formation. These findings suggest that Leon/USP5 plays a dual role in regulation of UPS and autophagy.\",\"PeriodicalId\":72341,\"journal\":{\"name\":\"Autophagy reports\",\"volume\":\" 21\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/27694127.2023.2278299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/27694127.2023.2278299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual function of the Leon/USP5 deubiquitinase in the ubiquitin-proteasome and autophagic pathways
The ubiquitin-proteasome system (UPS) and autophagy are highly conserved processes that maintain cellular health through the clearance of misfolded/aberrant proteins and damaged organelles. Ubiquitination is a crucial protein modification to regulate entry in these two pathways. However, the function of deubiquitinases (DUBs) in the UPS and autophagy remains largely unclear. The Leon/USP5 deubiquitinase is essential for maintaining ubiquitin homeostasis and proteasome function. In our recent study, we found that Leon/USP5 depletion resulted in the induction of autophagosome formation and an enhancement of the autophagic flux. Additionally, a genetic analysis in Drosophila revealed that Leon overexpression suppressed Atg1-induced cell death. We further showed that Leon/USP5 interacts with the autophagy initiator Atg1/ULK1, regulating its levels and thus modulating autophagosome formation. These findings suggest that Leon/USP5 plays a dual role in regulation of UPS and autophagy.