超声辅助10xSBFLike仿生合成MOF-Hap纳米复合材料光催化降解二甲双胍

Mark Tristan D.C. Español, ER Joshua G. Garcia, Louise Andrea V. Maligaya, Carla Mae S. Santos, Jan Abigail H. Santos, Nemia G. Suarnaba, Rugi Vicente C. Rubi, Reibelle Raguindin
{"title":"超声辅助10xSBFLike仿生合成MOF-Hap纳米复合材料光催化降解二甲双胍","authors":"Mark Tristan D.C. Español, ER Joshua G. Garcia, Louise Andrea V. Maligaya, Carla Mae S. Santos, Jan Abigail H. Santos, Nemia G. Suarnaba, Rugi Vicente C. Rubi, Reibelle Raguindin","doi":"10.14416/j.asep.2023.11.002","DOIUrl":null,"url":null,"abstract":"High levels of emerging pollutants, such as pharmaceutical compounds like metformin (MET), have been an issue for many years. The effective removal of these compounds from wastewater poses a significant challenge and has spurred interest among researchers. This study aims to integrate two of the prominent research interests in photocatalysis, Metal-Organic Frameworks (MOF), and Hydroxyapatite (HAp), and tests their effectiveness in the photocatalytic degradation of MET. The MOF-HAp was produced using a biomimetic method via 10xSBF-like solution with and without ultrasound assistance at varying biomimetic times. MOF-HAp nanocomposite’s photocatalytic degradation capabilities were tested by degrading MET, considering varying parameters – initial pollutant concentration, catalyst loading, and exposure time. Results showed that a biomimetic time of 6 h synthesized with ultrasound irradiation presented the most promising physicochemical properties for MOF-HAp, as verified by the X-ray Fluorescence (XRF), Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET), X-ray Diffractometer (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) analyses. In the photocatalytic degradation of MET, catalyst loading, exposure time, and initial pollutant concentration were found to have significant effects on the percent degradation. The initial concentration of 8 ppm, catalyst loading of 0.25 g, and 120 min of exposure time produced the highest percent degradation with an average of 82.25%. The findings of this study prove MOF-HAp's potential to effectively degrade organic and pharmaceutical pollutants in wastewater.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":" 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-Assisted Biomimetic Synthesis of MOF-Hap Nanocomposite via 10xSBFLike for the Photocatalytic Degradation of Metformin\",\"authors\":\"Mark Tristan D.C. Español, ER Joshua G. Garcia, Louise Andrea V. Maligaya, Carla Mae S. Santos, Jan Abigail H. Santos, Nemia G. Suarnaba, Rugi Vicente C. Rubi, Reibelle Raguindin\",\"doi\":\"10.14416/j.asep.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High levels of emerging pollutants, such as pharmaceutical compounds like metformin (MET), have been an issue for many years. The effective removal of these compounds from wastewater poses a significant challenge and has spurred interest among researchers. This study aims to integrate two of the prominent research interests in photocatalysis, Metal-Organic Frameworks (MOF), and Hydroxyapatite (HAp), and tests their effectiveness in the photocatalytic degradation of MET. The MOF-HAp was produced using a biomimetic method via 10xSBF-like solution with and without ultrasound assistance at varying biomimetic times. MOF-HAp nanocomposite’s photocatalytic degradation capabilities were tested by degrading MET, considering varying parameters – initial pollutant concentration, catalyst loading, and exposure time. Results showed that a biomimetic time of 6 h synthesized with ultrasound irradiation presented the most promising physicochemical properties for MOF-HAp, as verified by the X-ray Fluorescence (XRF), Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET), X-ray Diffractometer (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) analyses. In the photocatalytic degradation of MET, catalyst loading, exposure time, and initial pollutant concentration were found to have significant effects on the percent degradation. The initial concentration of 8 ppm, catalyst loading of 0.25 g, and 120 min of exposure time produced the highest percent degradation with an average of 82.25%. The findings of this study prove MOF-HAp's potential to effectively degrade organic and pharmaceutical pollutants in wastewater.\",\"PeriodicalId\":8097,\"journal\":{\"name\":\"Applied Science and Engineering Progress\",\"volume\":\" 21\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Science and Engineering Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14416/j.asep.2023.11.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2023.11.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

高水平的新兴污染物,如二甲双胍(MET)等药物化合物,多年来一直是一个问题。从废水中有效去除这些化合物提出了重大挑战,并引起了研究人员的兴趣。本研究旨在整合光催化领域的两个重要研究方向,金属有机框架(MOF)和羟基磷灰石(HAp),并测试它们在光催化降解MET中的有效性。MOF-HAp采用仿生方法,在不同的仿生时间,通过10xsbf样溶液在有和没有超声辅助的情况下产生。MOF-HAp纳米复合材料的光催化降解能力通过降解MET来测试,考虑不同的参数-初始污染物浓度,催化剂负载和暴露时间。结果表明,通过x射线荧光(XRF)、扫描电镜(SEM)、布鲁诺尔-埃米特-泰勒(BET)、x射线衍射(XRD)和傅里叶变换红外光谱(FTIR)分析,超声辐照合成的仿生时间为6 h的MOF-HAp具有最理想的理化性质。在光催化降解MET的过程中,催化剂负载、暴露时间和初始污染物浓度对降解率有显著影响。初始浓度为8 ppm,催化剂负载为0.25 g,暴露时间为120 min时,降解率最高,平均为82.25%。本研究结果证明MOF-HAp具有有效降解废水中有机和药物污染物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrasound-Assisted Biomimetic Synthesis of MOF-Hap Nanocomposite via 10xSBFLike for the Photocatalytic Degradation of Metformin
High levels of emerging pollutants, such as pharmaceutical compounds like metformin (MET), have been an issue for many years. The effective removal of these compounds from wastewater poses a significant challenge and has spurred interest among researchers. This study aims to integrate two of the prominent research interests in photocatalysis, Metal-Organic Frameworks (MOF), and Hydroxyapatite (HAp), and tests their effectiveness in the photocatalytic degradation of MET. The MOF-HAp was produced using a biomimetic method via 10xSBF-like solution with and without ultrasound assistance at varying biomimetic times. MOF-HAp nanocomposite’s photocatalytic degradation capabilities were tested by degrading MET, considering varying parameters – initial pollutant concentration, catalyst loading, and exposure time. Results showed that a biomimetic time of 6 h synthesized with ultrasound irradiation presented the most promising physicochemical properties for MOF-HAp, as verified by the X-ray Fluorescence (XRF), Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET), X-ray Diffractometer (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) analyses. In the photocatalytic degradation of MET, catalyst loading, exposure time, and initial pollutant concentration were found to have significant effects on the percent degradation. The initial concentration of 8 ppm, catalyst loading of 0.25 g, and 120 min of exposure time produced the highest percent degradation with an average of 82.25%. The findings of this study prove MOF-HAp's potential to effectively degrade organic and pharmaceutical pollutants in wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Science and Engineering Progress
Applied Science and Engineering Progress Engineering-Engineering (all)
CiteScore
4.70
自引率
0.00%
发文量
56
期刊最新文献
Nanostructured Composites: Modelling for Tailored Industrial Application Facile Synthesis of Hybrid-Polyoxometalates Nanocomposite for Degradation of Cationic and Anionic Dyes in Water Treatment Characterization of Polyvinylpyrrolidone-2-Acrylamide-2-Methlypropansulphonic Acid Based Polymer as a Corrosion Inhibitor for Copper and Brass in Hydrochloric Acid Conditional Optimization on the Photocatalytic Degradation Removal Efficiency of Formaldehyde using TiO2 – Nylon 6 Electrospun Composite Membrane Multicomponent Equilibrium Isotherms and Kinetics Study of Heavy Metals Removal from Aqueous Solutions Using Electrocoagulation Combined with Mordenite Zeolite and Ultrasonication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1