Pub Date : 2024-08-08DOI: 10.14416/j.asep.2024.08.004
Gh Owais Shah, Gaurav Arora
This comprehensive study explores the application of metallic, polymeric, and hybrid nanocomposites, particularly integrating carbon nanotubes (CNTs) to enhance mechanical properties. Various mathematical models predict critical properties like elastic modulus, with analyses assessing mechanical behavior across different CNT volume fractions. Findings emphasize the influence of fiber distribution and porosity on mechanical properties, with clusters acting as stress concentrators. Matrix materials include Aluminum 356 and HDPE, with CNTs and Coir fibers as reinforcements, and hybrid composites combining HDPE, Coir, and CNTs are studied. Elastic modulus calculations employ micromechanical models, with results varying based on volume fractions and composite compositions. Experimental validation enhances technical robustness, ensuring applicability in real-world scenarios. Aerospace applications favor models like Combined Voigt–Reuss, Halpin–Tsai Equations, and Hashin–Strikman for their accuracy and computational efficiency, while automotive applications prefer Halpin–Tsai Equations and Combined Equations for practical use. These models balance accuracy and computational efficiency, providing valuable insights for industrial applications. The calculated effective modulus ranged from 81.67 GPa to 118.78 GPa for Al-CNT composites, from 11.09 GPa to 51.05 GPa for HDPE-CNT composites, and from 1.15 GPa to 1.34 GPa for HDPE-Coir composites, showcasing the wide range of mechanical properties achievable through different composite compositions and volume fractions.
{"title":"Nanostructured Composites: Modelling for Tailored Industrial Application","authors":"Gh Owais Shah, Gaurav Arora","doi":"10.14416/j.asep.2024.08.004","DOIUrl":"https://doi.org/10.14416/j.asep.2024.08.004","url":null,"abstract":"This comprehensive study explores the application of metallic, polymeric, and hybrid nanocomposites, particularly integrating carbon nanotubes (CNTs) to enhance mechanical properties. Various mathematical models predict critical properties like elastic modulus, with analyses assessing mechanical behavior across different CNT volume fractions. Findings emphasize the influence of fiber distribution and porosity on mechanical properties, with clusters acting as stress concentrators. Matrix materials include Aluminum 356 and HDPE, with CNTs and Coir fibers as reinforcements, and hybrid composites combining HDPE, Coir, and CNTs are studied. Elastic modulus calculations employ micromechanical models, with results varying based on volume fractions and composite compositions. Experimental validation enhances technical robustness, ensuring applicability in real-world scenarios. Aerospace applications favor models like Combined Voigt–Reuss, Halpin–Tsai Equations, and Hashin–Strikman for their accuracy and computational efficiency, while automotive applications prefer Halpin–Tsai Equations and Combined Equations for practical use. These models balance accuracy and computational efficiency, providing valuable insights for industrial applications. The calculated effective modulus ranged from 81.67 GPa to 118.78 GPa for Al-CNT composites, from 11.09 GPa to 51.05 GPa for HDPE-CNT composites, and from 1.15 GPa to 1.34 GPa for HDPE-Coir composites, showcasing the wide range of mechanical properties achievable through different composite compositions and volume fractions.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"44 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.14416/j.asep.2024.07.014
Wei Wei Leow, Alvin Duke, Siti Kartini Enche Ab Rahim, Qi Hwa Ng, P. Hoo, A. Nasib, Muhamad Qauyum Zawawi Ahamad Suffin, N. Abdullah
Photocatalysis emerges as a promising method for treating organic dye contaminated wastewater. This process involves the use of photocatalysts through light activation, typically semiconductors such as titanium dioxide (TiO2) or polyoxometalates (POM) to generate reactive species capable of degrading organic pollutants. Several factors influence the photodegradation of ionic and cationic dyes including chemical properties, reaction mechanism and degradation efficiency. This work evaluated photodegradation performance of methyl orange (MO) and malachite green (MG) dyes using hybrid-polyoxometalate (HPOM) photocatalyst. Fourier Transform Infrared Spectroscopy (FTIR) identified the characteristic band at 3463.66 cm–1 (O-H) and 997.74 cm–1 (W-O). Scanning Electron Microscopy (SEM) revealed the presence of rod-like and granular structures in HPOM, representing silver acetate and sodium tungstate. X-ray diffraction (XRD) confirmed characteristic peak of Keggin structure, revealing high crystallinity of HPOM. UV-assisted photodegradation was evaluated on different parameters (initial dye concentration, photocatalyst dosage and pH), highlighting HPOM’s better affinity for degrading cationic dye. The optimum photodegradation conditions for MG and MO dyes were 20 ppm dye concentration, 100 mg photocatalyst dosage, and pH 7 and 8, respectively. The kinetic data was fitted with the Langmuir Hinshelwood kinetic model, indicating pseudo-first-order kinetics. HPOM exhibited a higher rate constant, k for MG (k = 0.0068 min–1) than MO (k = 0.0029 min–1).
{"title":"Facile Synthesis of Hybrid-Polyoxometalates Nanocomposite for Degradation of Cationic and Anionic Dyes in Water Treatment","authors":"Wei Wei Leow, Alvin Duke, Siti Kartini Enche Ab Rahim, Qi Hwa Ng, P. Hoo, A. Nasib, Muhamad Qauyum Zawawi Ahamad Suffin, N. Abdullah","doi":"10.14416/j.asep.2024.07.014","DOIUrl":"https://doi.org/10.14416/j.asep.2024.07.014","url":null,"abstract":"Photocatalysis emerges as a promising method for treating organic dye contaminated wastewater. This process involves the use of photocatalysts through light activation, typically semiconductors such as titanium dioxide (TiO2) or polyoxometalates (POM) to generate reactive species capable of degrading organic pollutants. Several factors influence the photodegradation of ionic and cationic dyes including chemical properties, reaction mechanism and degradation efficiency. This work evaluated photodegradation performance of methyl orange (MO) and malachite green (MG) dyes using hybrid-polyoxometalate (HPOM) photocatalyst. Fourier Transform Infrared Spectroscopy (FTIR) identified the characteristic band at 3463.66 cm–1 (O-H) and 997.74 cm–1 (W-O). Scanning Electron Microscopy (SEM) revealed the presence of rod-like and granular structures in HPOM, representing silver acetate and sodium tungstate. X-ray diffraction (XRD) confirmed characteristic peak of Keggin structure, revealing high crystallinity of HPOM. UV-assisted photodegradation was evaluated on different parameters (initial dye concentration, photocatalyst dosage and pH), highlighting HPOM’s better affinity for degrading cationic dye. The optimum photodegradation conditions for MG and MO dyes were 20 ppm dye concentration, 100 mg photocatalyst dosage, and pH 7 and 8, respectively. The kinetic data was fitted with the Langmuir Hinshelwood kinetic model, indicating pseudo-first-order kinetics. HPOM exhibited a higher rate constant, k for MG (k = 0.0068 min–1) than MO (k = 0.0029 min–1).","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"33 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141799047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.14416/j.asep.2024.07.013
M. Makhatha, G. M. Tsoeunyane, Luyanda Masana Yvette Maqubela, Sergei Sherbakov, Daria Podgayskaya, V. H. M., Pawan Kumar
Copper and its alloy are susceptible to corrosion in heat exchangers during acid cleaning. The corrosion leads to materials loss and damage; hence it is important to prohibit such corrosion damage using an eco-friendly corrosion inhibitor. In the current work, a polymer composite-based corrosion inhibitor was prepared using polyvinylpyrrolidone (PVP) and 2-Acrylamido-2-methylpropane sulfonic acid (AMPS). The PVP copolymer undergoes polymerization with the AMPS having several interconnected uniformly sized pores and produces a PVP–AMPS composite with rod-like microstructure. The effect of concentration, time, and temperature on corrosion inhibition efficiency (IE) of PVP–AMPS composite was studied for copper and brass in hydrochloric acid (HCl) solution. The IE increases with concentration and decreases with time and temperature. A change in cathodic and anodic Tafel slopes with the concentration of PVP–AMPS inhibitors was observed. The increase in IE with concentration was attributed to the solubility of PVP–AMPS composite in HCl. However, the decrease in IR with time and temperature was due to the desorption of PVP–AMPS composite from the surface of copper and brass and also due to the exothermic reactions at higher temperature. A few peaks in FTIR spectra at 3000–3100 cm−1 were missing, which is due to the stretching vibration of H–C during the crosslinking polymerization. Further, the absence of the O–H peak indicated that the polymerization process removed the water molecule. The best correlation coefficient (R2) for the Langmuir adsorption mechanism was achieved. A negative Gibbs free energy (ΔG) envisages the spontaneity of the adsorption process. However, the | ΔG| for adsorption was less than 20 kJmol−1 confirming the process as physisorption. A shift in anodic and cathodic branches in the presence of the PVP–AMPS inhibitor indicated a mixed-type inhibitor behavior.
{"title":"Characterization of Polyvinylpyrrolidone-2-Acrylamide-2-Methlypropansulphonic Acid Based Polymer as a Corrosion Inhibitor for Copper and Brass in Hydrochloric Acid","authors":"M. Makhatha, G. M. Tsoeunyane, Luyanda Masana Yvette Maqubela, Sergei Sherbakov, Daria Podgayskaya, V. H. M., Pawan Kumar","doi":"10.14416/j.asep.2024.07.013","DOIUrl":"https://doi.org/10.14416/j.asep.2024.07.013","url":null,"abstract":"Copper and its alloy are susceptible to corrosion in heat exchangers during acid cleaning. The corrosion leads to materials loss and damage; hence it is important to prohibit such corrosion damage using an eco-friendly corrosion inhibitor. In the current work, a polymer composite-based corrosion inhibitor was prepared using polyvinylpyrrolidone (PVP) and 2-Acrylamido-2-methylpropane sulfonic acid (AMPS). The PVP copolymer undergoes polymerization with the AMPS having several interconnected uniformly sized pores and produces a PVP–AMPS composite with rod-like microstructure. The effect of concentration, time, and temperature on corrosion inhibition efficiency (IE) of PVP–AMPS composite was studied for copper and brass in hydrochloric acid (HCl) solution. The IE increases with concentration and decreases with time and temperature. A change in cathodic and anodic Tafel slopes with the concentration of PVP–AMPS inhibitors was observed. The increase in IE with concentration was attributed to the solubility of PVP–AMPS composite in HCl. However, the decrease in IR with time and temperature was due to the desorption of PVP–AMPS composite from the surface of copper and brass and also due to the exothermic reactions at higher temperature. A few peaks in FTIR spectra at 3000–3100 cm−1 were missing, which is due to the stretching vibration of H–C during the crosslinking polymerization. Further, the absence of the O–H peak indicated that the polymerization process removed the water molecule. The best correlation coefficient (R2) for the Langmuir adsorption mechanism was achieved. A negative Gibbs free energy (ΔG) envisages the spontaneity of the adsorption process. However, the | ΔG| for adsorption was less than 20 kJmol−1 confirming the process as physisorption. A shift in anodic and cathodic branches in the presence of the PVP–AMPS inhibitor indicated a mixed-type inhibitor behavior.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"115 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141802102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.14416/j.asep.2024.07.012
Taddao Pahasup-anan, K. Suwannahong, P. Kampeerapappun, Ratthapol Rangkupan, Wipada Dechapanya
Since the outbreak of the coronavirus disease in 2019, many people have adjusted their work and lifestyle to the new normal, such as purchasing takeaway dishes or utilizing food delivery services more frequently. This causes individuals to spend more time indoors. The health, comfort, and well-being of building occupants are directly impacted by indoor air quality, which is a significant issue. The main objective of this study was to investigate the optimal conditions for the treatment of gaseous formaldehyde using TiO2 – Nylon 6 electrospun composite membrane via photocatalytic oxidation. Response surface methodology (RSM) model with the Box-Behnken Design (BBD) was applied for experimental design and statistical analysis. Three factors (catalyst dosage, initial formaldehyde concentration, and gas flow rate) affecting the removal efficiency were studied. Three sets of experiments were conducted to compare the formaldehyde removal efficiencies of the following processes; the adsorption process, the photolysis process, and the photocatalytic oxidation process. From the results, it is obvious that the photocatalytic oxidation process yielded the highest removal efficiency (83.43%) as compared to the other two processes. The mechanism of the formaldehyde photocatalytic oxidation process can be described using the simplified Langmuir-Hinshelwood equation. The reaction follows a pseudo-first order reaction, with a rate constant of 0.0058 min–1. The optimal conditions were found to be at 80.0%w/w catalyst dosage, 7.0 ppm initial formaldehyde concentration, and 1.5 L/min gas flow rate which resulted in an 84.54% removal efficiency after 420 minutes of treatment period. Thus, the application use of the TiO2 – Nylon 6 electrospun composite membrane equipped with the UV light source could be a promising alternative technology for indoor air treatment.
{"title":"Conditional Optimization on the Photocatalytic Degradation Removal Efficiency of Formaldehyde using TiO2 – Nylon 6 Electrospun Composite Membrane","authors":"Taddao Pahasup-anan, K. Suwannahong, P. Kampeerapappun, Ratthapol Rangkupan, Wipada Dechapanya","doi":"10.14416/j.asep.2024.07.012","DOIUrl":"https://doi.org/10.14416/j.asep.2024.07.012","url":null,"abstract":"Since the outbreak of the coronavirus disease in 2019, many people have adjusted their work and lifestyle to the new normal, such as purchasing takeaway dishes or utilizing food delivery services more frequently. This causes individuals to spend more time indoors. The health, comfort, and well-being of building occupants are directly impacted by indoor air quality, which is a significant issue. The main objective of this study was to investigate the optimal conditions for the treatment of gaseous formaldehyde using TiO2 – Nylon 6 electrospun composite membrane via photocatalytic oxidation. Response surface methodology (RSM) model with the Box-Behnken Design (BBD) was applied for experimental design and statistical analysis. Three factors (catalyst dosage, initial formaldehyde concentration, and gas flow rate) affecting the removal efficiency were studied. Three sets of experiments were conducted to compare the formaldehyde removal efficiencies of the following processes; the adsorption process, the photolysis process, and the photocatalytic oxidation process. From the results, it is obvious that the photocatalytic oxidation process yielded the highest removal efficiency (83.43%) as compared to the other two processes. The mechanism of the formaldehyde photocatalytic oxidation process can be described using the simplified Langmuir-Hinshelwood equation. The reaction follows a pseudo-first order reaction, with a rate constant of 0.0058 min–1. The optimal conditions were found to be at 80.0%w/w catalyst dosage, 7.0 ppm initial formaldehyde concentration, and 1.5 L/min gas flow rate which resulted in an 84.54% removal efficiency after 420 minutes of treatment period. Thus, the application use of the TiO2 – Nylon 6 electrospun composite membrane equipped with the UV light source could be a promising alternative technology for indoor air treatment.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"106 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141820617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.14416/j.asep.2024.07.011
S. Al‐Jubouri, Rasha Habeeb Salman, Entisar Mohsen Khudhair, Ammar Salih Abbas, A. F. Al-Alawy, Sajad Yas Khudhair, M. Salih, Hassanain A. Hassan, Abdullatif Alfutimie
Combining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported, as the initial concentration of each metal decreased from approximately 50 ppm to 1.19 for nickel, 3.06 for zinc, and less than 1 ppm for copper. In contrast, ultrasonication did not show any improvement in the treatment process. The extended Langmuir isotherm model convincingly described the experimental data; the Temkin and Dubinin-Radushkevich isotherm models have proven that the removal processes were physical and exothermic. Finally, the pseudo-second-order kinetics model appropriately explained the kinetics of the process with correlation coefficients of 0.9337 and 0.9016, respectively.
{"title":"Multicomponent Equilibrium Isotherms and Kinetics Study of Heavy Metals Removal from Aqueous Solutions Using Electrocoagulation Combined with Mordenite Zeolite and Ultrasonication","authors":"S. Al‐Jubouri, Rasha Habeeb Salman, Entisar Mohsen Khudhair, Ammar Salih Abbas, A. F. Al-Alawy, Sajad Yas Khudhair, M. Salih, Hassanain A. Hassan, Abdullatif Alfutimie","doi":"10.14416/j.asep.2024.07.011","DOIUrl":"https://doi.org/10.14416/j.asep.2024.07.011","url":null,"abstract":"Combining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported, as the initial concentration of each metal decreased from approximately 50 ppm to 1.19 for nickel, 3.06 for zinc, and less than 1 ppm for copper. In contrast, ultrasonication did not show any improvement in the treatment process. The extended Langmuir isotherm model convincingly described the experimental data; the Temkin and Dubinin-Radushkevich isotherm models have proven that the removal processes were physical and exothermic. Finally, the pseudo-second-order kinetics model appropriately explained the kinetics of the process with correlation coefficients of 0.9337 and 0.9016, respectively.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"125 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141821875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.14416/j.asep.2024.07.010
Muhammad Ayub Khan, E. Panakkal, M. Sriariyanun, M. Gundupalli, S. Roddecha, Keerthi Katam, Jayapriya Jayaprakash, K. Cheenkachorn
Waste generated from tobacco cultivation has negatively impacted the environment due to its inappropriate disposal methods. This negative impact can be mitigated by valorizing tobacco residue. In this study, tobacco residue was pretreated and the effect of dewaxing and washing on sugar and ethanol yields was studied. Tobacco residue was pretreated with alkali (2.17 M NaOH, 94 °C, 4.5 h) or acid (2.95 wt% H2SO4, 133 °C, 0.92 h). The effect of dewaxing was studied by incorporating the dewaxing step prior to pretreatment. Similarly, the effect of washing was analyzed by omitting post-pretreatment washing. Compositional analysis revealed that dewaxing prior to alkaline pretreatment improved cellulose content by 80% compared to the standard pretreated sample. Enzymatic hydrolysis of the samples showed that pretreatment had improved sugar yield by up to 6.1 times. Moreover, the sugar yield further improved when dewaxing and post-pretreatment washing steps were incorporated into the process. The unwashed biomass showed a 3-fold decrease in sugar compared to untreated biomass. Furthermore, fermentation studies showed that the dewaxed alkaline pretreated tobacco residue enhanced ethanol yield by 34% compared to standard pretreated biomass. Thus, this study reveals the potential of tobacco residue valorization and emphasizes the importance of dewaxing and post-pretreatment washing in a biorefinery.
{"title":"Dewaxing and Post-Pretreatment Washing: Impact on Sugar and Ethanol Yields from Tobacco Residue","authors":"Muhammad Ayub Khan, E. Panakkal, M. Sriariyanun, M. Gundupalli, S. Roddecha, Keerthi Katam, Jayapriya Jayaprakash, K. Cheenkachorn","doi":"10.14416/j.asep.2024.07.010","DOIUrl":"https://doi.org/10.14416/j.asep.2024.07.010","url":null,"abstract":"Waste generated from tobacco cultivation has negatively impacted the environment due to its inappropriate disposal methods. This negative impact can be mitigated by valorizing tobacco residue. In this study, tobacco residue was pretreated and the effect of dewaxing and washing on sugar and ethanol yields was studied. Tobacco residue was pretreated with alkali (2.17 M NaOH, 94 °C, 4.5 h) or acid (2.95 wt% H2SO4, 133 °C, 0.92 h). The effect of dewaxing was studied by incorporating the dewaxing step prior to pretreatment. Similarly, the effect of washing was analyzed by omitting post-pretreatment washing. Compositional analysis revealed that dewaxing prior to alkaline pretreatment improved cellulose content by 80% compared to the standard pretreated sample. Enzymatic hydrolysis of the samples showed that pretreatment had improved sugar yield by up to 6.1 times. Moreover, the sugar yield further improved when dewaxing and post-pretreatment washing steps were incorporated into the process. The unwashed biomass showed a 3-fold decrease in sugar compared to untreated biomass. Furthermore, fermentation studies showed that the dewaxed alkaline pretreated tobacco residue enhanced ethanol yield by 34% compared to standard pretreated biomass. Thus, this study reveals the potential of tobacco residue valorization and emphasizes the importance of dewaxing and post-pretreatment washing in a biorefinery.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":" 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141824359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.14416/j.asep.2024.07.009
Manveer Rana, Mohit Kumar, Ranvijay Kumar
Polypropylene (PP) is a versatile and widely used thermoplastic polymer that has found its way into various aspects from packaging materials and consumer products to automotive components and industrial applications. However, this widespread use of polypropylene also presents a significant challenge in the disposal of polypropylene waste and its durability aspects. So, the fused deposition modeling (FDM) technique arises as compiling outcomes for recycling discarded PP waste to create functional products. The properties of FDM components produced from recycled polypropylene (r-PP) are notably inferior to those of virgin PP FDM counterparts. Hence, it becomes imperative to comprehend the substantial alterations that r-PP undergoes during successive extrusion processes, including chain scission, alterations in viscosity, and reductions in breaking strength. The incorporation of additives has emerged as a promising solution to enhance the performance of r-PP. In this context, the present study explores the development of a novel composite material by blending r-PP with aluminum powder. The combination of these materials leverages the sustainability benefits of r-PP and the excellent thermal and mechanical properties of aluminum, making it a promising candidate for a wide range of applications. The tensile results show a significant increase in Young’s modulus for pre-heat treated composite specimen at 214 ℃ extrusion temperature. The SEM fractrographic analysis confirms the homogenized distribution after pre-heat treatments. XRD results analyzed the degree of crystallinity in the composite specimens.
{"title":"Fused Deposition Modelling Approach in Recycled Polypropylene/Aluminum Powder Composites for Sustainable Development","authors":"Manveer Rana, Mohit Kumar, Ranvijay Kumar","doi":"10.14416/j.asep.2024.07.009","DOIUrl":"https://doi.org/10.14416/j.asep.2024.07.009","url":null,"abstract":"Polypropylene (PP) is a versatile and widely used thermoplastic polymer that has found its way into various aspects from packaging materials and consumer products to automotive components and industrial applications. However, this widespread use of polypropylene also presents a significant challenge in the disposal of polypropylene waste and its durability aspects. So, the fused deposition modeling (FDM) technique arises as compiling outcomes for recycling discarded PP waste to create functional products. The properties of FDM components produced from recycled polypropylene (r-PP) are notably inferior to those of virgin PP FDM counterparts. Hence, it becomes imperative to comprehend the substantial alterations that r-PP undergoes during successive extrusion processes, including chain scission, alterations in viscosity, and reductions in breaking strength. The incorporation of additives has emerged as a promising solution to enhance the performance of r-PP. In this context, the present study explores the development of a novel composite material by blending r-PP with aluminum powder. The combination of these materials leverages the sustainability benefits of r-PP and the excellent thermal and mechanical properties of aluminum, making it a promising candidate for a wide range of applications. The tensile results show a significant increase in Young’s modulus for pre-heat treated composite specimen at 214 ℃ extrusion temperature. The SEM fractrographic analysis confirms the homogenized distribution after pre-heat treatments. XRD results analyzed the degree of crystallinity in the composite specimens.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":" 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141830033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cornerstone of any electric power system lies in its power transformers, as their seamless operation is crucial for network reliability. Instant disconnection from the grid is imperative upon detecting any faults to prevent cascading issues. However, distinguishing between fault conditions, like inrush current, which necessitates caution rather than immediate action, poses a challenge for effective protection schemes. This dilemma can lead to relay malfunctions, further jeopardizing system integrity. This paper delves into a thorough analysis and comparison of various methods employed in differential protection to discern between internal faults and inrush currents, aiming to enhance system resilience. This comprehensive review explores the efficacy of intelligent techniques, hybrid approaches, and traditional methods in fault detection. By shedding light on the strengths and limitations of each method, researchers in this domain can glean insights to innovate and address the deficiencies of existing strategies in tackling internal faults and inrush currents detection. Ultimately, this endeavor seeks to fortify the reliability and stability of power systems in the face of dynamic operational challenges.
{"title":"Transformer Differential Protection Method for Recognition between Power Transformer Internal Defects and Inrush Current: A Comprehensive Review of Detection Techniques","authors":"Wael Abdulhassan Atiyah, Shahram Karimi, Mohamad Moradi","doi":"10.14416/j.asep.2024.07.008","DOIUrl":"https://doi.org/10.14416/j.asep.2024.07.008","url":null,"abstract":"The cornerstone of any electric power system lies in its power transformers, as their seamless operation is crucial for network reliability. Instant disconnection from the grid is imperative upon detecting any faults to prevent cascading issues. However, distinguishing between fault conditions, like inrush current, which necessitates caution rather than immediate action, poses a challenge for effective protection schemes. This dilemma can lead to relay malfunctions, further jeopardizing system integrity. This paper delves into a thorough analysis and comparison of various methods employed in differential protection to discern between internal faults and inrush currents, aiming to enhance system resilience. This comprehensive review explores the efficacy of intelligent techniques, hybrid approaches, and traditional methods in fault detection. By shedding light on the strengths and limitations of each method, researchers in this domain can glean insights to innovate and address the deficiencies of existing strategies in tackling internal faults and inrush currents detection. Ultimately, this endeavor seeks to fortify the reliability and stability of power systems in the face of dynamic operational challenges.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"39 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141662063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.14416/j.asep.2024.07.007
A. Kengpol, Akksatcha Duangsuphasin
The growing elderly population has led to a rise in health issues, particularly chronic diseases. Passion fruits contain numerous nutrients that may help in the treatment of chronic diseases. However, specific recommendations for daily passion fruit nutrient intake for the elderly are currently lacking in the literature. This research aimed to identify passion fruit groups and to suggest the appropriate daily passion fruit nutrient intake for elderly people using network in network (NiN) architecture. This research demonstrates that the NiN model can be effectively applied to identify passion fruit groups for the elderly. It is more efficient than other convolutional neural network (CNN) architectures. The results show that NiN can correctly identify passion fruit groups and suggest the appropriate amount of nutrient intake for the elderly, achieving + 96.76% accuracy in the training dataset and 95.89% accuracy in the validation dataset, surpassing 84.6% accuracy achieved by EaglAI. Sensitivity analysis of the NiN model using mean absolute error (MAE) for geometric transformations revealed consistent training image results and model robustness. This research benefits elderly people with chronic diseases by providing tailored recommendations for daily passion fruit intake, based on the analysis of sugar nutrients using the NiN model.
{"title":"Identification of Passion Fruit Nutrients for Elderly People Using Network in Network Architecture: An Empirical Study in Thailand","authors":"A. Kengpol, Akksatcha Duangsuphasin","doi":"10.14416/j.asep.2024.07.007","DOIUrl":"https://doi.org/10.14416/j.asep.2024.07.007","url":null,"abstract":"The growing elderly population has led to a rise in health issues, particularly chronic diseases. Passion fruits contain numerous nutrients that may help in the treatment of chronic diseases. However, specific recommendations for daily passion fruit nutrient intake for the elderly are currently lacking in the literature. This research aimed to identify passion fruit groups and to suggest the appropriate daily passion fruit nutrient intake for elderly people using network in network (NiN) architecture. This research demonstrates that the NiN model can be effectively applied to identify passion fruit groups for the elderly. It is more efficient than other convolutional neural network (CNN) architectures. The results show that NiN can correctly identify passion fruit groups and suggest the appropriate amount of nutrient intake for the elderly, achieving + 96.76% accuracy in the training dataset and 95.89% accuracy in the validation dataset, surpassing 84.6% accuracy achieved by EaglAI. Sensitivity analysis of the NiN model using mean absolute error (MAE) for geometric transformations revealed consistent training image results and model robustness. This research benefits elderly people with chronic diseases by providing tailored recommendations for daily passion fruit intake, based on the analysis of sugar nutrients using the NiN model.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"36 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141663889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the power electronic system, coated solar panels attracted a lot of interest in present times. The proposed work aims to achieve two key objectives: maximal power extraction and solar panel coating. To reduce the cost of coating material for solar panels, Silver Nano Particles (AgNPs) are first collected from the leaves of Rose periwinkle plants. This strategy aims to achieve maximal power extraction by coating solar panels with green synthesized silver nanoparticles. To reduce the cost of coating material, Rosy periwinkle plant leaves are used to synthesize silver nanoparticles or AgNPs. To ascertain the framework's capacity for measuring energy both before and after the panels are coated with AgNP, this study theoretically analyses the data. The power current and voltage-current characteristics of the study were validated, enabling an examination of the study's effectiveness. The coated type outperformed the normal solar panel by 2%, according to the results. With a new approach called Farmland Fertility Optimization – Maximum Power Position Tracking, the precise peak site for increased energy yield is discovered. The bi-directional converter is also utilized to mitigate stress and increase voltage gain. To improve the power quality with fewer harmonics, the 3-phase inverter and the LC filtering circuits are used. Finally, a variety of performance measures are used to confirm the results of coated solar panels using power-tracking control techniques. The findings suggest that AgNP-coated solar panels provide the best possible electrical energy with improved voltage, current, and power quality. Performance evaluation shows that the coated solar panel's power tracking efficiency has increased to 99% with decreased harmonics of 2.52%.
{"title":"An Innovative AgNP-based Solar Panel Coating and Farmland Fertility Optimization (FFO) based Power Extraction Methodology for Grid Systems","authors":"Priya Palanichamy, Rajesh Krishnasamy, Senthil Muthu Kumar Thiagamani","doi":"10.14416/j.asep.2024.07.006","DOIUrl":"https://doi.org/10.14416/j.asep.2024.07.006","url":null,"abstract":"In the power electronic system, coated solar panels attracted a lot of interest in present times. The proposed work aims to achieve two key objectives: maximal power extraction and solar panel coating. To reduce the cost of coating material for solar panels, Silver Nano Particles (AgNPs) are first collected from the leaves of Rose periwinkle plants. This strategy aims to achieve maximal power extraction by coating solar panels with green synthesized silver nanoparticles. To reduce the cost of coating material, Rosy periwinkle plant leaves are used to synthesize silver nanoparticles or AgNPs. To ascertain the framework's capacity for measuring energy both before and after the panels are coated with AgNP, this study theoretically analyses the data. The power current and voltage-current characteristics of the study were validated, enabling an examination of the study's effectiveness. The coated type outperformed the normal solar panel by 2%, according to the results. With a new approach called Farmland Fertility Optimization – Maximum Power Position Tracking, the precise peak site for increased energy yield is discovered. The bi-directional converter is also utilized to mitigate stress and increase voltage gain. To improve the power quality with fewer harmonics, the 3-phase inverter and the LC filtering circuits are used. Finally, a variety of performance measures are used to confirm the results of coated solar panels using power-tracking control techniques. The findings suggest that AgNP-coated solar panels provide the best possible electrical energy with improved voltage, current, and power quality. Performance evaluation shows that the coated solar panel's power tracking efficiency has increased to 99% with decreased harmonics of 2.52%.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"120 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141666931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}