利用纳米技术实现可持续发展目标的缓解战略

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Pub Date : 2023-11-09 DOI:10.1007/s40010-023-00854-8
Debmalya Roy, Subhash Mandal, Kingsuk Mukhopadhyay
{"title":"利用纳米技术实现可持续发展目标的缓解战略","authors":"Debmalya Roy,&nbsp;Subhash Mandal,&nbsp;Kingsuk Mukhopadhyay","doi":"10.1007/s40010-023-00854-8","DOIUrl":null,"url":null,"abstract":"<div><p>Hollow porous polymeric fibers have been fabricated to facilitate the adsorption of analyses on chemically modified synthetic membrane for rapid decontamination of contaminates. The pocket water filtration cartridge which could fit into plastic water bottle of standard nozzle size has been developed using polymeric membrane and electro spun nanofibers-based changeable pre-filters. During and several days after flooding, there is serious shortage of water to drink, cook, washing or cleaning as water become contaminated. The unique feature of our air droppable water filtration cartridges enables mass scale supply of drinkable water during natural calamities. This complete indigenous polymer nanofibers-based product has already successfully completed field trials at two major Indian government organizations for sustained supply of drinkable water. The hydration packs for long-range reconnaissance patrol have also been designed and developed with this portable filtration cartridges to supply the potable water during uninterrupted surveillances. Our clean and safe water solution has many added advantages compared to commercially available products in terms of higher filtration rate, easier operation and custom specific design to address the polluted water treatment challenges at much reduced cost.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":"94 1","pages":"143 - 151"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40010-023-00854-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Mitigation Strategies Using Nano-enabled Technologies for Sustainable Development Goals\",\"authors\":\"Debmalya Roy,&nbsp;Subhash Mandal,&nbsp;Kingsuk Mukhopadhyay\",\"doi\":\"10.1007/s40010-023-00854-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hollow porous polymeric fibers have been fabricated to facilitate the adsorption of analyses on chemically modified synthetic membrane for rapid decontamination of contaminates. The pocket water filtration cartridge which could fit into plastic water bottle of standard nozzle size has been developed using polymeric membrane and electro spun nanofibers-based changeable pre-filters. During and several days after flooding, there is serious shortage of water to drink, cook, washing or cleaning as water become contaminated. The unique feature of our air droppable water filtration cartridges enables mass scale supply of drinkable water during natural calamities. This complete indigenous polymer nanofibers-based product has already successfully completed field trials at two major Indian government organizations for sustained supply of drinkable water. The hydration packs for long-range reconnaissance patrol have also been designed and developed with this portable filtration cartridges to supply the potable water during uninterrupted surveillances. Our clean and safe water solution has many added advantages compared to commercially available products in terms of higher filtration rate, easier operation and custom specific design to address the polluted water treatment challenges at much reduced cost.</p></div>\",\"PeriodicalId\":744,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"volume\":\"94 1\",\"pages\":\"143 - 151\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40010-023-00854-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40010-023-00854-8\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-023-00854-8","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

已制造出中空多孔聚合物纤维,以促进化学改性合成膜对分析物的吸附,从而快速净化污染物。利用聚合物膜和基于电纺纳米纤维的可更换式预滤器,开发了可装入标准喷嘴尺寸塑料水瓶的袖珍水过滤盒。洪灾期间和洪灾后几天,由于水受到污染,饮用水、烹饪用水、洗涤用水或清洁用水严重短缺。我们的气滴式水过滤盒具有独特的功能,可在自然灾害期间大规模供应饮用水。这种基于纳米纤维聚合物的全套本土产品已经在印度的两个主要政府机构成功完成了实地试验,用于持续供应饮用水。我们还设计和开发了用于远程侦察巡逻的水合包,使用这种便携式过滤盒在不间断的侦察期间供应饮用水。与市面上的产品相比,我们的清洁安全水解决方案具有许多额外的优势,如过滤率更高、操作更简便以及可定制的特殊设计,从而以更低的成本应对污染水处理难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigation Strategies Using Nano-enabled Technologies for Sustainable Development Goals

Hollow porous polymeric fibers have been fabricated to facilitate the adsorption of analyses on chemically modified synthetic membrane for rapid decontamination of contaminates. The pocket water filtration cartridge which could fit into plastic water bottle of standard nozzle size has been developed using polymeric membrane and electro spun nanofibers-based changeable pre-filters. During and several days after flooding, there is serious shortage of water to drink, cook, washing or cleaning as water become contaminated. The unique feature of our air droppable water filtration cartridges enables mass scale supply of drinkable water during natural calamities. This complete indigenous polymer nanofibers-based product has already successfully completed field trials at two major Indian government organizations for sustained supply of drinkable water. The hydration packs for long-range reconnaissance patrol have also been designed and developed with this portable filtration cartridges to supply the potable water during uninterrupted surveillances. Our clean and safe water solution has many added advantages compared to commercially available products in terms of higher filtration rate, easier operation and custom specific design to address the polluted water treatment challenges at much reduced cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
期刊最新文献
Double Sequences of Bi-complex Numbers Estimation of Crustal Tilting from Petrotectonic Interpretation of Mesozone Granitoid and its Marginal Parts, Eastern Dharwar Craton, India Transition Temperature versus Formula Mass of Selected High-TC Oxide Superconductors: A Step Closure to Room Temperature Superconductivity A Study on Countability in the Context of Multiset Topological Spaces On Machining Profile Accuracy in the Modified Electrochemical Machining Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1