MEIXIA ZOU, XIUWEN LI, JINZHENG FANG, HONG WEN, WEIWEI FANG
{"title":"动态深度神经网络推理自适应信道跳变","authors":"MEIXIA ZOU, XIUWEN LI, JINZHENG FANG, HONG WEN, WEIWEI FANG","doi":"10.55730/1300-0632.4020","DOIUrl":null,"url":null,"abstract":"Deep neural networks have recently made remarkable achievements in computer vision applications. However, the high computational requirements needed to achieve accurate inference results can be a significant barrier to deploying DNNs on resource-constrained computing devices, such as those found in the Internet-of-things. In this work, we propose a fresh approach called adaptive channel skipping (ACS) that prioritizes the identification of the most suitable channels for skipping and implements an efficient skipping mechanism during inference. We begin with the development of a new gating network model, ACS-GN, which employs fine-grained channel-wise skipping to enable input-dependent inference and achieve a desirable balance between accuracy and resource consumption. To further enhance the efficiency of channel skipping, we propose a dynamic grouping convolutional computing approach, ACS-DG, which helps to reduce the computational cost of ACS-GN. The results of our experiment indicate that ACS-GN and ACS-DG exhibit superior performance compared to existing gating network designs and convolutional computing mechanisms, respectively. When they are combined, the ACS framework results in a significant reduction of computational expenses and a remarkable improvement in the accuracy of inferences","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"21 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic deep neural network inference via adaptive channel skipping\",\"authors\":\"MEIXIA ZOU, XIUWEN LI, JINZHENG FANG, HONG WEN, WEIWEI FANG\",\"doi\":\"10.55730/1300-0632.4020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks have recently made remarkable achievements in computer vision applications. However, the high computational requirements needed to achieve accurate inference results can be a significant barrier to deploying DNNs on resource-constrained computing devices, such as those found in the Internet-of-things. In this work, we propose a fresh approach called adaptive channel skipping (ACS) that prioritizes the identification of the most suitable channels for skipping and implements an efficient skipping mechanism during inference. We begin with the development of a new gating network model, ACS-GN, which employs fine-grained channel-wise skipping to enable input-dependent inference and achieve a desirable balance between accuracy and resource consumption. To further enhance the efficiency of channel skipping, we propose a dynamic grouping convolutional computing approach, ACS-DG, which helps to reduce the computational cost of ACS-GN. The results of our experiment indicate that ACS-GN and ACS-DG exhibit superior performance compared to existing gating network designs and convolutional computing mechanisms, respectively. When they are combined, the ACS framework results in a significant reduction of computational expenses and a remarkable improvement in the accuracy of inferences\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0632.4020\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0632.4020","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dynamic deep neural network inference via adaptive channel skipping
Deep neural networks have recently made remarkable achievements in computer vision applications. However, the high computational requirements needed to achieve accurate inference results can be a significant barrier to deploying DNNs on resource-constrained computing devices, such as those found in the Internet-of-things. In this work, we propose a fresh approach called adaptive channel skipping (ACS) that prioritizes the identification of the most suitable channels for skipping and implements an efficient skipping mechanism during inference. We begin with the development of a new gating network model, ACS-GN, which employs fine-grained channel-wise skipping to enable input-dependent inference and achieve a desirable balance between accuracy and resource consumption. To further enhance the efficiency of channel skipping, we propose a dynamic grouping convolutional computing approach, ACS-DG, which helps to reduce the computational cost of ACS-GN. The results of our experiment indicate that ACS-GN and ACS-DG exhibit superior performance compared to existing gating network designs and convolutional computing mechanisms, respectively. When they are combined, the ACS framework results in a significant reduction of computational expenses and a remarkable improvement in the accuracy of inferences
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.