{"title":"基于滑模控制理论的脉冲神经网络手写数字识别","authors":"YEŞİM ÖNİZ, MEHMET AYYILDIZ","doi":"10.55730/1300-0632.4022","DOIUrl":null,"url":null,"abstract":"In this paper, a spiking neural network (SNN) has been proposed for recognizing the digits written on the LCD screen of an experimental setup. The convergence of the learning algorithm has been ensured by using sliding mode control (SMC) theory and the Lyapunov stability method for the adaptation of the network parameters. The spike response model (SRM) has been utilized in the design of the SNN. The performance of the proposed learning scheme has been evaluated both on the experimental data and on the MNIST dataset. The simulated and experimental results of the SNN structure have been compared with the responses of a conventional neural network (ANN) for which the weight update rules have been also derived using SMC theory. The conducted simulations and experimental studies reveal that convergence can be ensured for the proposed learning scheme and the SNN yields higher recognition accuracy compared to a conventional ANN.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"42 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognizing handwritten digits using spiking neural networks with learning algorithms based on sliding mode control theory\",\"authors\":\"YEŞİM ÖNİZ, MEHMET AYYILDIZ\",\"doi\":\"10.55730/1300-0632.4022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a spiking neural network (SNN) has been proposed for recognizing the digits written on the LCD screen of an experimental setup. The convergence of the learning algorithm has been ensured by using sliding mode control (SMC) theory and the Lyapunov stability method for the adaptation of the network parameters. The spike response model (SRM) has been utilized in the design of the SNN. The performance of the proposed learning scheme has been evaluated both on the experimental data and on the MNIST dataset. The simulated and experimental results of the SNN structure have been compared with the responses of a conventional neural network (ANN) for which the weight update rules have been also derived using SMC theory. The conducted simulations and experimental studies reveal that convergence can be ensured for the proposed learning scheme and the SNN yields higher recognition accuracy compared to a conventional ANN.\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0632.4022\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0632.4022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Recognizing handwritten digits using spiking neural networks with learning algorithms based on sliding mode control theory
In this paper, a spiking neural network (SNN) has been proposed for recognizing the digits written on the LCD screen of an experimental setup. The convergence of the learning algorithm has been ensured by using sliding mode control (SMC) theory and the Lyapunov stability method for the adaptation of the network parameters. The spike response model (SRM) has been utilized in the design of the SNN. The performance of the proposed learning scheme has been evaluated both on the experimental data and on the MNIST dataset. The simulated and experimental results of the SNN structure have been compared with the responses of a conventional neural network (ANN) for which the weight update rules have been also derived using SMC theory. The conducted simulations and experimental studies reveal that convergence can be ensured for the proposed learning scheme and the SNN yields higher recognition accuracy compared to a conventional ANN.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.