Norfatirah Muhamad Sarih, Muhammad Afiq Misman, Simon Maher, Azura A Rashid
{"title":"工程硅酸盐分散体是一种经济高效的分散剂,工程碳酸盐分散体是一种新型增强剂,用于丁腈乳胶手套","authors":"Norfatirah Muhamad Sarih, Muhammad Afiq Misman, Simon Maher, Azura A Rashid","doi":"10.1177/14777606231203850","DOIUrl":null,"url":null,"abstract":"Utilization of silicate minerals fillers in latex offer dual function as a compatible filler and cheapener that economical way to reduce latex consumption. This research explores the effect of using Engineered Silicate Composite Dispersion (ESD 086) as fillers for nitrile latex-supported gloves, seeking to explore their properties while ensuring cost-effectiveness. The reinforcement effect of novel Engineered Carbonate Dispersion (ECD 011) for ESD 086 filled Carboxylated Nitrile Butadiene Rubber (XNBR/ESD 086) latex films has also been explored. XNBR latex films were compounded with three variants of ESD 086 at different loadings (in phr). From three variants of ESD 086 fillers, variant ESD 086A at 10 phr shows the highest tensile strength. As the ESD 086A filler loading increased up to 15 phr, the tensile strength decreased, indicating the ineffectiveness to be used at higher loading. The work was continued by exploring the use of novel ECD 011 to minimize the decrement effect. The 15 phr ESD 086 filled XNBR latex films (XNBR/ESD 086A-15) were subjected to a hybrid loading from 0 to 1.2 phr with 0.2 phr staggered increment together with the reduction of ECD 011:ZnO ratio in the XNBR latex compounds. Results show that at 0.6:0.6 phr of ECD 011:ZnO, the tensile strength of XNBR/ESD 086A-15 latex films increased and the elongation at break also improved. Using ESD 086A can reduce the usage of XNBR latex. Still, it can only be used up to 10 phr (optimum loading) and ECD 011 can maintain the physical properties and offer maximum cost-saving options for XNBR latex glove formulation at higher loading of ESD fillers. Overall, both engineered dispersions offer potential commercial benefits for the Nitrile gloves industry.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"19 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of engineered silicate dispersion as a cost-effective cheapener and engineered carbonate dispersion as novel reinforcing additives for nitrile latex glove application\",\"authors\":\"Norfatirah Muhamad Sarih, Muhammad Afiq Misman, Simon Maher, Azura A Rashid\",\"doi\":\"10.1177/14777606231203850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilization of silicate minerals fillers in latex offer dual function as a compatible filler and cheapener that economical way to reduce latex consumption. This research explores the effect of using Engineered Silicate Composite Dispersion (ESD 086) as fillers for nitrile latex-supported gloves, seeking to explore their properties while ensuring cost-effectiveness. The reinforcement effect of novel Engineered Carbonate Dispersion (ECD 011) for ESD 086 filled Carboxylated Nitrile Butadiene Rubber (XNBR/ESD 086) latex films has also been explored. XNBR latex films were compounded with three variants of ESD 086 at different loadings (in phr). From three variants of ESD 086 fillers, variant ESD 086A at 10 phr shows the highest tensile strength. As the ESD 086A filler loading increased up to 15 phr, the tensile strength decreased, indicating the ineffectiveness to be used at higher loading. The work was continued by exploring the use of novel ECD 011 to minimize the decrement effect. The 15 phr ESD 086 filled XNBR latex films (XNBR/ESD 086A-15) were subjected to a hybrid loading from 0 to 1.2 phr with 0.2 phr staggered increment together with the reduction of ECD 011:ZnO ratio in the XNBR latex compounds. Results show that at 0.6:0.6 phr of ECD 011:ZnO, the tensile strength of XNBR/ESD 086A-15 latex films increased and the elongation at break also improved. Using ESD 086A can reduce the usage of XNBR latex. Still, it can only be used up to 10 phr (optimum loading) and ECD 011 can maintain the physical properties and offer maximum cost-saving options for XNBR latex glove formulation at higher loading of ESD fillers. Overall, both engineered dispersions offer potential commercial benefits for the Nitrile gloves industry.\",\"PeriodicalId\":20860,\"journal\":{\"name\":\"Progress in Rubber Plastics and Recycling Technology\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Rubber Plastics and Recycling Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14777606231203850\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14777606231203850","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Utilization of engineered silicate dispersion as a cost-effective cheapener and engineered carbonate dispersion as novel reinforcing additives for nitrile latex glove application
Utilization of silicate minerals fillers in latex offer dual function as a compatible filler and cheapener that economical way to reduce latex consumption. This research explores the effect of using Engineered Silicate Composite Dispersion (ESD 086) as fillers for nitrile latex-supported gloves, seeking to explore their properties while ensuring cost-effectiveness. The reinforcement effect of novel Engineered Carbonate Dispersion (ECD 011) for ESD 086 filled Carboxylated Nitrile Butadiene Rubber (XNBR/ESD 086) latex films has also been explored. XNBR latex films were compounded with three variants of ESD 086 at different loadings (in phr). From three variants of ESD 086 fillers, variant ESD 086A at 10 phr shows the highest tensile strength. As the ESD 086A filler loading increased up to 15 phr, the tensile strength decreased, indicating the ineffectiveness to be used at higher loading. The work was continued by exploring the use of novel ECD 011 to minimize the decrement effect. The 15 phr ESD 086 filled XNBR latex films (XNBR/ESD 086A-15) were subjected to a hybrid loading from 0 to 1.2 phr with 0.2 phr staggered increment together with the reduction of ECD 011:ZnO ratio in the XNBR latex compounds. Results show that at 0.6:0.6 phr of ECD 011:ZnO, the tensile strength of XNBR/ESD 086A-15 latex films increased and the elongation at break also improved. Using ESD 086A can reduce the usage of XNBR latex. Still, it can only be used up to 10 phr (optimum loading) and ECD 011 can maintain the physical properties and offer maximum cost-saving options for XNBR latex glove formulation at higher loading of ESD fillers. Overall, both engineered dispersions offer potential commercial benefits for the Nitrile gloves industry.
期刊介绍:
The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.