基于结构健康监测数据和数值模拟的钢筋混凝土大坝变形预警指标

IF 3.7 Q1 WATER RESOURCES Water science and engineering Pub Date : 2023-09-10 DOI:10.1016/j.wse.2023.09.002
Ming-qiang Zhan , Bo Chen , Zhong-ru Wu
{"title":"基于结构健康监测数据和数值模拟的钢筋混凝土大坝变形预警指标","authors":"Ming-qiang Zhan ,&nbsp;Bo Chen ,&nbsp;Zhong-ru Wu","doi":"10.1016/j.wse.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process. This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety. In this study, a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data, statistical models, three-dimensional finite element model (FEM) numerical simulation, and the critical conditions of the dam structure. A statistical model was established to separate the water pressure component. Then, a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component. Furthermore, the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately. In addition, the method for inversion of comprehensive mechanical parameters after dam reinforcement was used. The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated. A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model. The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms. It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000868/pdfft?md5=cf4a5484d5f7e1036a90e0ee577432fa&pid=1-s2.0-S1674237023000868-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deformation warning index for reinforced concrete dam based on structural health monitoring data and numerical simulation\",\"authors\":\"Ming-qiang Zhan ,&nbsp;Bo Chen ,&nbsp;Zhong-ru Wu\",\"doi\":\"10.1016/j.wse.2023.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process. This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety. In this study, a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data, statistical models, three-dimensional finite element model (FEM) numerical simulation, and the critical conditions of the dam structure. A statistical model was established to separate the water pressure component. Then, a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component. Furthermore, the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately. In addition, the method for inversion of comprehensive mechanical parameters after dam reinforcement was used. The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated. A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model. The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms. It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams.</p></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674237023000868/pdfft?md5=cf4a5484d5f7e1036a90e0ee577432fa&pid=1-s2.0-S1674237023000868-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237023000868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237023000868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

大坝在老化过程中进行加固时,坝体和坝基的材料力学参数会发生变化。这使工程结构状态发生重大变化,使其结构安全难以保证。本文根据原型监测数据、统计模型、三维有限元模型(FEM)数值模拟以及大坝结构的临界条件,提出了一种新的钢筋混凝土大坝变形预警指标。建立了分离水压分量的统计模型。然后,建立了钢筋混凝土坝的三维有限元模型,模拟了坝体的水压分量。同时,对相同水库水位变化条件下影响坝体力学参数的变形分量进行了准确的分离和量化。此外,还采用了坝体加固后综合力学参数反演的方法。研究了水库水位和温度变化对混凝土坝变形行为的影响机制。将前向模拟的极端降温期临界水压分量和温度分量与统计模型分离的老化分量相结合,提出了一种新的变形预警指标。新的变形预警指标考虑了加固前后坝体的结构状态,将加固前后坝体的结构强度准则与变形演化机制联系起来。为加固坝的长期服务和运行管理提供理论依据和决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deformation warning index for reinforced concrete dam based on structural health monitoring data and numerical simulation

The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process. This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety. In this study, a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data, statistical models, three-dimensional finite element model (FEM) numerical simulation, and the critical conditions of the dam structure. A statistical model was established to separate the water pressure component. Then, a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component. Furthermore, the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately. In addition, the method for inversion of comprehensive mechanical parameters after dam reinforcement was used. The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated. A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model. The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms. It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
5.00%
发文量
573
审稿时长
50 weeks
期刊介绍: Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.
期刊最新文献
Trichoderma aureoviride hyphal pellets embedded in corncob-sodium alginate matrix for efficient uranium(VI) biosorption from aqueous solutions Microbial community diversity during algal inhibition using slow-release microcapsules of tea polyphenols Influence of breach parameter models on hazard classification of off-stream reservoirs Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge: Degradation characteristics, microbial community succession, and toxicity assessment Superior decomposition of xenobiotic RB5 dye using three-dimensional electrochemical treatment: Response surface methodology modelling, artificial intelligence, and machine learning-based optimisation approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1