考虑社会公平的异质客运地铁换乘时间表优化

IF 1.7 4区 工程技术 Q4 TRANSPORTATION Urban Rail Transit Pub Date : 2023-09-01 DOI:10.1007/s40864-023-00198-x
Yuyang Zhou, Shanshan He, Xutao Wang, Peiyu Wang, Yanyan Chen, Ming Luo
{"title":"考虑社会公平的异质客运地铁换乘时间表优化","authors":"Yuyang Zhou, Shanshan He, Xutao Wang, Peiyu Wang, Yanyan Chen, Ming Luo","doi":"10.1007/s40864-023-00198-x","DOIUrl":null,"url":null,"abstract":"Abstract With the accelerated operation of subway networks, the increasing number of subway transfer stations results in inefficient passenger travel. The target of this paper is to solve the research question of how to reduce transfer waiting time (TWTT) for heterogeneous passengers. The key problem is to determine the optimal concerted train timetable considering the transfer walking time (TWKT) of the passengers. On the basis of field survey data, the regression method was used to establish a TWKT prediction model for general passengers (G) and vulnerable passengers (V), including the elderly, passengers traveling with children, and those carrying large luggage. Afterward, a two-objective integer programming model was formulated to minimize the subway operating costs and TWTT for each group, in which V is given the priority weight to ensure social equity. The headway, loading capacity, and TWKT of heterogeneous passengers were set as optimization model constraints. A genetic algorithm (GA) was designed to find the optimal solution. A case study in which the Beijing Jianguomen Station was selected as the key transfer station was conducted to verify the performance of the proposed model. Key results show that the total TWTT for V and G can be reduced by 18.6% and 27.2%, respectively, with one train saved. Results of the parameter sensitivity analysis reveal the interconnection between the operating cost, heterogeneous passenger proportion, and transfer time. The proposed model can be used for improving transfer efficiency for passengers while considering the enterprise operating costs.","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Heterogeneous Passenger Subway Transfer Timetable Considering Social Equity\",\"authors\":\"Yuyang Zhou, Shanshan He, Xutao Wang, Peiyu Wang, Yanyan Chen, Ming Luo\",\"doi\":\"10.1007/s40864-023-00198-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With the accelerated operation of subway networks, the increasing number of subway transfer stations results in inefficient passenger travel. The target of this paper is to solve the research question of how to reduce transfer waiting time (TWTT) for heterogeneous passengers. The key problem is to determine the optimal concerted train timetable considering the transfer walking time (TWKT) of the passengers. On the basis of field survey data, the regression method was used to establish a TWKT prediction model for general passengers (G) and vulnerable passengers (V), including the elderly, passengers traveling with children, and those carrying large luggage. Afterward, a two-objective integer programming model was formulated to minimize the subway operating costs and TWTT for each group, in which V is given the priority weight to ensure social equity. The headway, loading capacity, and TWKT of heterogeneous passengers were set as optimization model constraints. A genetic algorithm (GA) was designed to find the optimal solution. A case study in which the Beijing Jianguomen Station was selected as the key transfer station was conducted to verify the performance of the proposed model. Key results show that the total TWTT for V and G can be reduced by 18.6% and 27.2%, respectively, with one train saved. Results of the parameter sensitivity analysis reveal the interconnection between the operating cost, heterogeneous passenger proportion, and transfer time. The proposed model can be used for improving transfer efficiency for passengers while considering the enterprise operating costs.\",\"PeriodicalId\":44861,\"journal\":{\"name\":\"Urban Rail Transit\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Rail Transit\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40864-023-00198-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Rail Transit","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40864-023-00198-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

随着地铁网络运行速度的加快,地铁中转站数量的增加导致乘客出行效率低下。本文的研究目标是解决如何减少异构乘客的换乘等待时间的研究问题。关键问题是在考虑乘客换乘步行时间的情况下,确定最优的协调列车时刻表。在实地调查数据的基础上,运用回归方法建立了普通旅客(G)和弱势旅客(V)的TWKT预测模型,包括老年人、携带儿童的旅客、携带大件行李的旅客。然后,以各群体地铁运营成本和TWTT最小为目标,建立双目标整数规划模型,其中V为优先权重,以保证社会公平。以异构乘客的车头时距、载客量和TWKT为优化模型约束。设计了一种遗传算法来寻找最优解。以北京建国门站为重点中转站,验证了模型的有效性。关键结果表明,在节省1列列车的情况下,V和G的总TWTT分别可减少18.6%和27.2%。参数敏感性分析结果揭示了运营成本、异质乘客比例和换乘时间之间的相互关系。该模型可用于在考虑企业运营成本的情况下提高乘客换乘效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Heterogeneous Passenger Subway Transfer Timetable Considering Social Equity
Abstract With the accelerated operation of subway networks, the increasing number of subway transfer stations results in inefficient passenger travel. The target of this paper is to solve the research question of how to reduce transfer waiting time (TWTT) for heterogeneous passengers. The key problem is to determine the optimal concerted train timetable considering the transfer walking time (TWKT) of the passengers. On the basis of field survey data, the regression method was used to establish a TWKT prediction model for general passengers (G) and vulnerable passengers (V), including the elderly, passengers traveling with children, and those carrying large luggage. Afterward, a two-objective integer programming model was formulated to minimize the subway operating costs and TWTT for each group, in which V is given the priority weight to ensure social equity. The headway, loading capacity, and TWKT of heterogeneous passengers were set as optimization model constraints. A genetic algorithm (GA) was designed to find the optimal solution. A case study in which the Beijing Jianguomen Station was selected as the key transfer station was conducted to verify the performance of the proposed model. Key results show that the total TWTT for V and G can be reduced by 18.6% and 27.2%, respectively, with one train saved. Results of the parameter sensitivity analysis reveal the interconnection between the operating cost, heterogeneous passenger proportion, and transfer time. The proposed model can be used for improving transfer efficiency for passengers while considering the enterprise operating costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Urban Rail Transit
Urban Rail Transit Multiple-
CiteScore
3.10
自引率
6.70%
发文量
20
审稿时长
5 weeks
期刊介绍: Urban Rail Transit is a peer-reviewed, international, interdisciplinary and open-access journal published under the SpringerOpen brand that provides a platform for scientists, researchers and engineers of urban rail transit to publish their original, significant articles on topics in urban rail transportation operation and management, design and planning, civil engineering, equipment and systems and other related topics to urban rail transit. It is to promote the academic discussions and technical exchanges among peers in the field. The journal also reports important news on the development and operating experience of urban rail transit and related government policies, laws, guidelines, and regulations. It could serve as an important reference for decision¬makers and technologists in urban rail research and construction field. Specific topics cover: Column I: Urban Rail Transportation Operation and Management • urban rail transit flow theory, operation, planning, control and management • traffic and transport safety • traffic polices and economics • urban rail management • traffic information management • urban rail scheduling • train scheduling and management • strategies of ticket price • traffic information engineering & control • intelligent transportation system (ITS) and information technology • economics, finance, business & industry • train operation, control • transport Industries • transportation engineering Column II: Urban Rail Transportation Design and Planning • urban rail planning • pedestrian studies • sustainable transport engineering • rail electrification • rail signaling and communication • Intelligent & Automated Transport System Technology ? • rolling stock design theory and structural reliability • urban rail transit electrification and automation technologies • transport Industries • transportation engineering Column III: Civil Engineering • civil engineering technologies • maintenance of rail infrastructure • transportation infrastructure systems • roads, bridges, tunnels, and underground engineering ? • subgrade and pavement maintenance and performance Column IV: Equipments and Systems • mechanical-electronic technologies • manufacturing engineering • inspection for trains and rail • vehicle-track coupling system dynamics, simulation and control • superconductivity and levitation technology • magnetic suspension and evacuated tube transport • railway technology & engineering • Railway Transport Industries • transport & vehicle engineering Column V: other topics of interest • modern tram • interdisciplinary transportation research • environmental impacts such as vibration, noise and pollution Article types: • Papers. Reports of original research work. • Design notes. Brief contributions on current design, development and application work; not normally more than 2500 words (3 journal pages), including descriptions of apparatus or techniques developed for a specific purpose, important experimental or theoretical points and novel technical solutions to commonly encountered problems. • Rapid communications. Brief, urgent announcements of significant advances or preliminary accounts of new work, not more than 3500 words (4 journal pages). The most important criteria for acceptance of a rapid communication are novel and significant. For these articles authors must state briefly, in a covering letter, exactly why their works merit rapid publication. • Review articles. These are intended to summarize accepted practice and report on recent progress in selected areas. Such articles are generally commissioned from experts in various field s by the Editorial Board, but others wishing to write a review article may submit an outline for preliminary consideration.
期刊最新文献
Dynamic Harmonic Distortion Analysis and Mitigation Strategies for DC Third Rail Systems Linear Time Train Contraction Minor Labeling for Railway Line Capacity Analysis Quantifying the Social Equity of Economic Performance for Different Groups of Residents in Rail Transit Station Areas A Comprehensive Review of the Development Characteristics and Future Trends of TOD in Chinese Urban Rail Transit Modelling and Simulation of Stray Current in Urban Rail Transit—A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1