基膜模拟水凝胶与Rho相关蛋白激酶抑制剂合作促进腺泡蛋白样唾液腺球体的发育

IF 4 Q2 ENGINEERING, BIOMEDICAL Advanced Nanobiomed Research Pub Date : 2023-10-08 DOI:10.1002/anbr.202300088
Eric W. Fowler, Robert L. Witt, Xinqiao Jia
{"title":"基膜模拟水凝胶与Rho相关蛋白激酶抑制剂合作促进腺泡蛋白样唾液腺球体的发育","authors":"Eric W. Fowler,&nbsp;Robert L. Witt,&nbsp;Xinqiao Jia","doi":"10.1002/anbr.202300088","DOIUrl":null,"url":null,"abstract":"<p>Successful engineering of functional salivary glands necessitates the creation of cell-instructive environments for ex vivo expansion and lineage specification of primary human salivary gland stem cells (hS/PCs). Herein, basement membrane mimetic hydrogels are prepared using hyaluronic acid, cell adhesive peptides, and hyperbranched polyglycerol (HPG), with or without sulfate groups, to produce “hyperGel+” or “hyperGel”, respectively. Differential scanning fluorescence experiments confirm the ability of the sulfated HPG precursor to stabilize fibroblast growth factor 10. The hydrogels are nanoporous, cytocompatible, and cell-permissive, enabling the development of multicellular hS/PC spheroids in 14 days. The incorporation of sulfated HPG species in the hydrogel enhances cell proliferation. Culture of hS/PCs in hyperGel+ in the presence of a Rho kinase inhibitor Y-27632 (Y-27) leads to the development of spheroids with a central lumen, increases the expression of acinar marker aquaporin-3 at the transcript level (<i>AQP3</i>), and decreases the expression of ductal marker keratin 7 at both the transcript (<i>KRT7</i>) and the protein levels (K7). Reduced expression of transforming growth factor beta (TGF-β) targets SMAD2/3 is also observed in Y27-treated cultures, suggesting attenuation of TGF-β signaling. Thus, hyperGel+ cooperates with the Rho-associated protein kinase inhibitor to promote the development of lumened spheroids with enhanced expression of acinar markers.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 11","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300088","citationCount":"0","resultStr":"{\"title\":\"Basement Membrane Mimetic Hydrogel Cooperates with Rho-Associated Protein Kinase Inhibitor to Promote the Development of Acini-Like Salivary Gland Spheroids\",\"authors\":\"Eric W. Fowler,&nbsp;Robert L. Witt,&nbsp;Xinqiao Jia\",\"doi\":\"10.1002/anbr.202300088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Successful engineering of functional salivary glands necessitates the creation of cell-instructive environments for ex vivo expansion and lineage specification of primary human salivary gland stem cells (hS/PCs). Herein, basement membrane mimetic hydrogels are prepared using hyaluronic acid, cell adhesive peptides, and hyperbranched polyglycerol (HPG), with or without sulfate groups, to produce “hyperGel+” or “hyperGel”, respectively. Differential scanning fluorescence experiments confirm the ability of the sulfated HPG precursor to stabilize fibroblast growth factor 10. The hydrogels are nanoporous, cytocompatible, and cell-permissive, enabling the development of multicellular hS/PC spheroids in 14 days. The incorporation of sulfated HPG species in the hydrogel enhances cell proliferation. Culture of hS/PCs in hyperGel+ in the presence of a Rho kinase inhibitor Y-27632 (Y-27) leads to the development of spheroids with a central lumen, increases the expression of acinar marker aquaporin-3 at the transcript level (<i>AQP3</i>), and decreases the expression of ductal marker keratin 7 at both the transcript (<i>KRT7</i>) and the protein levels (K7). Reduced expression of transforming growth factor beta (TGF-β) targets SMAD2/3 is also observed in Y27-treated cultures, suggesting attenuation of TGF-β signaling. Thus, hyperGel+ cooperates with the Rho-associated protein kinase inhibitor to promote the development of lumened spheroids with enhanced expression of acinar markers.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"3 11\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300088\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

功能唾液腺的成功工程需要为原代人唾液腺干细胞(hS/PCs)的离体扩增和谱系规范创造细胞指导环境。本文采用透明质酸、细胞黏附肽和超支化聚甘油(HPG)制备基膜模拟水凝胶,有或没有硫酸盐基团,分别生成“hyperGel+”或“hyperGel”。差示扫描荧光实验证实了硫酸化HPG前体稳定成纤维细胞生长因子10的能力。水凝胶具有纳米多孔性、细胞相容性和细胞容许性,可在14天内形成多细胞hS/PC球体。在水凝胶中掺入硫酸酸化的HPG物种可促进细胞增殖。在Rho激酶抑制剂Y‐27632 (Y‐27)的存在下,在hyperGel+中培养hS/PCs导致具有中心管腔的球体发育,在转录水平(AQP3)上增加腺泡标记水通道蛋白3的表达,并在转录水平(KRT7)和蛋白质水平(K7)上降低导管标记角蛋白7的表达。在Y27处理的培养物中也观察到转化生长因子β (TGF - β)靶点SMAD2/3的表达减少,表明TGF - β信号的衰减。因此,hyperGel+与Rho相关的蛋白激酶抑制剂合作,通过增强腺泡标记物的表达来促进管状球体的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Basement Membrane Mimetic Hydrogel Cooperates with Rho-Associated Protein Kinase Inhibitor to Promote the Development of Acini-Like Salivary Gland Spheroids

Successful engineering of functional salivary glands necessitates the creation of cell-instructive environments for ex vivo expansion and lineage specification of primary human salivary gland stem cells (hS/PCs). Herein, basement membrane mimetic hydrogels are prepared using hyaluronic acid, cell adhesive peptides, and hyperbranched polyglycerol (HPG), with or without sulfate groups, to produce “hyperGel+” or “hyperGel”, respectively. Differential scanning fluorescence experiments confirm the ability of the sulfated HPG precursor to stabilize fibroblast growth factor 10. The hydrogels are nanoporous, cytocompatible, and cell-permissive, enabling the development of multicellular hS/PC spheroids in 14 days. The incorporation of sulfated HPG species in the hydrogel enhances cell proliferation. Culture of hS/PCs in hyperGel+ in the presence of a Rho kinase inhibitor Y-27632 (Y-27) leads to the development of spheroids with a central lumen, increases the expression of acinar marker aquaporin-3 at the transcript level (AQP3), and decreases the expression of ductal marker keratin 7 at both the transcript (KRT7) and the protein levels (K7). Reduced expression of transforming growth factor beta (TGF-β) targets SMAD2/3 is also observed in Y27-treated cultures, suggesting attenuation of TGF-β signaling. Thus, hyperGel+ cooperates with the Rho-associated protein kinase inhibitor to promote the development of lumened spheroids with enhanced expression of acinar markers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
期刊最新文献
Masthead Microfluidic Encapsulation of DNAs in Liquid Beads for Digital Loop-Mediated Isothermal Amplification Masthead Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor Nanoarchitectonics for Biomedical Research: Post-Nanotechnology Materials Approach for Bio-Active Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1