光子超晶体中红移和蓝移间隙中表面波衰减的色散特性

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Advances in Condensed Matter Physics Pub Date : 2023-10-07 DOI:10.1155/2023/6773192
Hasnain Haider, Munazza Zulfiqar Ali
{"title":"光子超晶体中红移和蓝移间隙中表面波衰减的色散特性","authors":"Hasnain Haider, Munazza Zulfiqar Ali","doi":"10.1155/2023/6773192","DOIUrl":null,"url":null,"abstract":"The dispersion characteristics of surface waves for transverse electric and magnetic polarization modes of photonic hypercrystals (PHC) are theoretically explored. PHC are composed of a dielectric and hyperbolic metamaterial (HMM) with thin layers of both metal and dielectric surface waves that decay inside red-shifted gaps have a negative group velocity, whereas surface waves that decay inside traditional blue-shifted gaps have more typical characteristics. Curve plotting is used to elucidate on how these surface waves depend on several other structural properties such as filling factor, widths of HMM and dielectric, frequency range and angle of incidence etc.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"64 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion Properties of Surface Waves Decaying in Red-Shifted and Blue-Shifted Gaps in Photonic Hypercrystals\",\"authors\":\"Hasnain Haider, Munazza Zulfiqar Ali\",\"doi\":\"10.1155/2023/6773192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dispersion characteristics of surface waves for transverse electric and magnetic polarization modes of photonic hypercrystals (PHC) are theoretically explored. PHC are composed of a dielectric and hyperbolic metamaterial (HMM) with thin layers of both metal and dielectric surface waves that decay inside red-shifted gaps have a negative group velocity, whereas surface waves that decay inside traditional blue-shifted gaps have more typical characteristics. Curve plotting is used to elucidate on how these surface waves depend on several other structural properties such as filling factor, widths of HMM and dielectric, frequency range and angle of incidence etc.\",\"PeriodicalId\":7382,\"journal\":{\"name\":\"Advances in Condensed Matter Physics\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Condensed Matter Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6773192\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6773192","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

从理论上探讨了光子超晶体(PHC)横向极化模式下表面波的色散特性。PHC由介电和双曲超材料(HMM)组成,其中金属和介电表面波的薄层在红移隙内衰减具有负群速度,而在传统蓝移隙内衰减的表面波具有更典型的特征。曲线绘制是用来说明这些表面波如何依赖于其他几个结构特性,如填充系数、HMM和介电介质的宽度、频率范围和入射角等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dispersion Properties of Surface Waves Decaying in Red-Shifted and Blue-Shifted Gaps in Photonic Hypercrystals
The dispersion characteristics of surface waves for transverse electric and magnetic polarization modes of photonic hypercrystals (PHC) are theoretically explored. PHC are composed of a dielectric and hyperbolic metamaterial (HMM) with thin layers of both metal and dielectric surface waves that decay inside red-shifted gaps have a negative group velocity, whereas surface waves that decay inside traditional blue-shifted gaps have more typical characteristics. Curve plotting is used to elucidate on how these surface waves depend on several other structural properties such as filling factor, widths of HMM and dielectric, frequency range and angle of incidence etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Condensed Matter Physics
Advances in Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties. Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.
期刊最新文献
The Effect of Pressure Variations on the Electronic Structure, Phonon, and Superconducting Properties of Yttrium Hydrogen Selenide Compound The Optimal Doping Ratio of Fe2O3 for Enhancing the Electrochemical Stability of Zeolitic Imidazolate Framework-8 for Energy Storage Devices Electron Transport Properties of Eu(Cu1 − xAgx)2Si2 (0 ≤ x ≤ 1): Initiation of Transition Eu2+ ↔ Eu2.41+ in the Intermediate Valence State Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites A Canonical Transformation for the Anderson Lattice Hamiltonian with f–f Electron Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1