Suraya Nabilah Zaini, Azlin Mohd Azmi, Annie Syazrin Ismail
{"title":"马来西亚州的能源排放概况和浮动太阳能减排潜力","authors":"Suraya Nabilah Zaini, Azlin Mohd Azmi, Annie Syazrin Ismail","doi":"10.30564/jees.v5i2.5923","DOIUrl":null,"url":null,"abstract":"The establishment of the National Low Carbon City Master Plan (NLCCM) by Malaysia's government presents a significant opportunity to minimize carbon emissions at the subnational or local scales, while simultaneously fostering remarkable economic potential. However, the lack of data management and understanding of emissions at the subnational level are hindering effective climate policies and planning to achieve the nationally determined contribution and carbon neutrality goal. There is an urgent need for a subnational emission inventory to understand and manage subnational emissions, particularly that of the energy sector which contribute the biggest to Malaysia's emission. This research aims to estimate carbon emissions for Selangor state in accordance with the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC), for stationary energy activities. The study also evaluates the mitigation potential of Floating Solar Photovoltaic (FSPV) proposed for Selangor. It was found that the total stationary energy emission for Selangor for the year 2019 was 18,070.16 ktCO2e, contributed the most by the Manufacturing sub-sector (40%), followed by the Commercial and Institutional sub-sector; with 82% contribution coming from the Scope 2 emission. The highest sub-sector of Scope 1 emissions was contributed by Manufacturing while Scope 2 emissions from the Commercial and Institutional. Additionally, the highest fuel consumed was natural gas, which amounted to 1404.32 ktCO2e (44%) of total emissions. The FSPV assessment showed the potential generation of 2.213 TWh per year, by only utilizing 10% of the identified available ponds and dams in Selangor, equivalent to an emission reduction of 1726.02 ktCO2e, offsetting 11.6% Scope 2 electricity emission. The results from the study can be used to better evaluate existing policies at the sub-national level, discover mitigation opportunities, and guide the creation of future policies.","PeriodicalId":55272,"journal":{"name":"Carpathian Journal of Earth and Environmental Sciences","volume":"51 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Emissions Profile and Floating Solar Mitigation Potential for a Malaysia's State\",\"authors\":\"Suraya Nabilah Zaini, Azlin Mohd Azmi, Annie Syazrin Ismail\",\"doi\":\"10.30564/jees.v5i2.5923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The establishment of the National Low Carbon City Master Plan (NLCCM) by Malaysia's government presents a significant opportunity to minimize carbon emissions at the subnational or local scales, while simultaneously fostering remarkable economic potential. However, the lack of data management and understanding of emissions at the subnational level are hindering effective climate policies and planning to achieve the nationally determined contribution and carbon neutrality goal. There is an urgent need for a subnational emission inventory to understand and manage subnational emissions, particularly that of the energy sector which contribute the biggest to Malaysia's emission. This research aims to estimate carbon emissions for Selangor state in accordance with the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC), for stationary energy activities. The study also evaluates the mitigation potential of Floating Solar Photovoltaic (FSPV) proposed for Selangor. It was found that the total stationary energy emission for Selangor for the year 2019 was 18,070.16 ktCO2e, contributed the most by the Manufacturing sub-sector (40%), followed by the Commercial and Institutional sub-sector; with 82% contribution coming from the Scope 2 emission. The highest sub-sector of Scope 1 emissions was contributed by Manufacturing while Scope 2 emissions from the Commercial and Institutional. Additionally, the highest fuel consumed was natural gas, which amounted to 1404.32 ktCO2e (44%) of total emissions. The FSPV assessment showed the potential generation of 2.213 TWh per year, by only utilizing 10% of the identified available ponds and dams in Selangor, equivalent to an emission reduction of 1726.02 ktCO2e, offsetting 11.6% Scope 2 electricity emission. The results from the study can be used to better evaluate existing policies at the sub-national level, discover mitigation opportunities, and guide the creation of future policies.\",\"PeriodicalId\":55272,\"journal\":{\"name\":\"Carpathian Journal of Earth and Environmental Sciences\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Earth and Environmental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/jees.v5i2.5923\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Earth and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/jees.v5i2.5923","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Energy Emissions Profile and Floating Solar Mitigation Potential for a Malaysia's State
The establishment of the National Low Carbon City Master Plan (NLCCM) by Malaysia's government presents a significant opportunity to minimize carbon emissions at the subnational or local scales, while simultaneously fostering remarkable economic potential. However, the lack of data management and understanding of emissions at the subnational level are hindering effective climate policies and planning to achieve the nationally determined contribution and carbon neutrality goal. There is an urgent need for a subnational emission inventory to understand and manage subnational emissions, particularly that of the energy sector which contribute the biggest to Malaysia's emission. This research aims to estimate carbon emissions for Selangor state in accordance with the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC), for stationary energy activities. The study also evaluates the mitigation potential of Floating Solar Photovoltaic (FSPV) proposed for Selangor. It was found that the total stationary energy emission for Selangor for the year 2019 was 18,070.16 ktCO2e, contributed the most by the Manufacturing sub-sector (40%), followed by the Commercial and Institutional sub-sector; with 82% contribution coming from the Scope 2 emission. The highest sub-sector of Scope 1 emissions was contributed by Manufacturing while Scope 2 emissions from the Commercial and Institutional. Additionally, the highest fuel consumed was natural gas, which amounted to 1404.32 ktCO2e (44%) of total emissions. The FSPV assessment showed the potential generation of 2.213 TWh per year, by only utilizing 10% of the identified available ponds and dams in Selangor, equivalent to an emission reduction of 1726.02 ktCO2e, offsetting 11.6% Scope 2 electricity emission. The results from the study can be used to better evaluate existing policies at the sub-national level, discover mitigation opportunities, and guide the creation of future policies.
期刊介绍:
The publishing of CARPATHIAN JOURNAL of EARTH and ENVIRONMENTAL SCIENCES has started in 2006. The regularity of this magazine is biannual. The magazine will publish scientific works, in international purposes, in different areas of research, such as : geology, geography, environmental sciences, the environmental pollution and protection, environmental chemistry and physic, environmental biodegradation, climatic exchanges, fighting against natural disasters, protected areas, soil degradation, water quality, water supplies, sustainable development.