两种浓缩物处理技术的渗透质量、高级氧化工艺的可处理性和成本,以提高饮用水回用的回收率

IF 4.3 4区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL Water Reuse Pub Date : 2023-09-01 DOI:10.2166/wrd.2023.002
Han Gu, Julio Polanco, Ken P. Ishida, Megan H. Plumlee, Michael Boyd, Erik Desormeaux, Graham J. G. Juby, Mojtaba Farrokh Shad
{"title":"两种浓缩物处理技术的渗透质量、高级氧化工艺的可处理性和成本,以提高饮用水回用的回收率","authors":"Han Gu, Julio Polanco, Ken P. Ishida, Megan H. Plumlee, Michael Boyd, Erik Desormeaux, Graham J. G. Juby, Mojtaba Farrokh Shad","doi":"10.2166/wrd.2023.002","DOIUrl":null,"url":null,"abstract":"Closed circuit reverse osmosis (CCRO) and forward osmosis-RO (FO-RO) were evaluated at a pilot scale to generate additional permeate from RO concentrate – achieving a recovery of 61% for CCRO and 35% for FO-RO – at a full-scale advanced water purification facility. This study assessed permeate water quality, suitability of the permeate for treatment by an ultraviolet-advanced oxidation process (UV-AOP), and cost/footprint for a conceptual 10- or 20-mgd system. Both technologies demonstrated inorganic, organic, and microbiological constituent removal suitable for blending with primary RO permeate. Virus challenge testing with MS coliphage demonstrated greater than 5-log removal by both technologies. Pilot-scale UV/hydrogen peroxide AOP treatment of CCRO or FO-RO permeate yielded similar performance (∼1.4-log N-nitrosodimethylamine removal and ∼0.5-log 1,4-dioxane removal) as the full-scale UV-AOP that treats the RO permeate from the purification facility. The estimated full-scale total unit cost (capital plus operation and maintenance costs) of product water produced by the two technologies was estimated to range from $0.91 to $1.12 per cubic meter, depending on the design flow rate of RO concentrate treated, and is estimated to be similar between the two technologies given the +50%/–30% expected accuracy of the Class 5 cost estimate.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":"77 1","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permeate quality, advanced oxidation process treatability, and cost for two concentrate treatment technologies to enhance recovery for potable reuse\",\"authors\":\"Han Gu, Julio Polanco, Ken P. Ishida, Megan H. Plumlee, Michael Boyd, Erik Desormeaux, Graham J. G. Juby, Mojtaba Farrokh Shad\",\"doi\":\"10.2166/wrd.2023.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Closed circuit reverse osmosis (CCRO) and forward osmosis-RO (FO-RO) were evaluated at a pilot scale to generate additional permeate from RO concentrate – achieving a recovery of 61% for CCRO and 35% for FO-RO – at a full-scale advanced water purification facility. This study assessed permeate water quality, suitability of the permeate for treatment by an ultraviolet-advanced oxidation process (UV-AOP), and cost/footprint for a conceptual 10- or 20-mgd system. Both technologies demonstrated inorganic, organic, and microbiological constituent removal suitable for blending with primary RO permeate. Virus challenge testing with MS coliphage demonstrated greater than 5-log removal by both technologies. Pilot-scale UV/hydrogen peroxide AOP treatment of CCRO or FO-RO permeate yielded similar performance (∼1.4-log N-nitrosodimethylamine removal and ∼0.5-log 1,4-dioxane removal) as the full-scale UV-AOP that treats the RO permeate from the purification facility. The estimated full-scale total unit cost (capital plus operation and maintenance costs) of product water produced by the two technologies was estimated to range from $0.91 to $1.12 per cubic meter, depending on the design flow rate of RO concentrate treated, and is estimated to be similar between the two technologies given the +50%/–30% expected accuracy of the Class 5 cost estimate.\",\"PeriodicalId\":34727,\"journal\":{\"name\":\"Water Reuse\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Reuse\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wrd.2023.002\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Reuse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2023.002","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在一个全面的先进水净化设施中,对闭路反渗透(CCRO)和正向渗透-RO (FO-RO)在中试规模上进行了评估,以从RO浓缩物中产生额外的渗透——CCRO的回收率为61%,FO-RO的回收率为35%。本研究评估了渗透水的水质、渗透水对紫外线高级氧化工艺(UV-AOP)处理的适用性,以及10或20毫克/天的概念性系统的成本/足迹。这两种技术都证明了无机、有机和微生物成分的去除适合与初级反渗透渗透物混合。用MS噬菌体进行的病毒挑战测试表明,两种技术的去除率均≥3.7 log。中试规模的UV/过氧化氢AOP处理CCRO或FO-RO渗透物的性能与处理纯化设施的RO渗透物的全面UV-AOP相似(去除率为~ 1.4 log n -亚硝基二甲胺和去除率为~ 0.5 log 1,4-二氧六环)。根据处理反渗透浓缩物的设计流速,两种技术生产的产品水的全规模总单位成本(资本加上运营和维护成本)估计在每立方米0.91美元至1.12美元之间,考虑到5级成本估计的+50%/ -30%的预期准确性,估计两种技术之间的成本相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Permeate quality, advanced oxidation process treatability, and cost for two concentrate treatment technologies to enhance recovery for potable reuse
Closed circuit reverse osmosis (CCRO) and forward osmosis-RO (FO-RO) were evaluated at a pilot scale to generate additional permeate from RO concentrate – achieving a recovery of 61% for CCRO and 35% for FO-RO – at a full-scale advanced water purification facility. This study assessed permeate water quality, suitability of the permeate for treatment by an ultraviolet-advanced oxidation process (UV-AOP), and cost/footprint for a conceptual 10- or 20-mgd system. Both technologies demonstrated inorganic, organic, and microbiological constituent removal suitable for blending with primary RO permeate. Virus challenge testing with MS coliphage demonstrated greater than 5-log removal by both technologies. Pilot-scale UV/hydrogen peroxide AOP treatment of CCRO or FO-RO permeate yielded similar performance (∼1.4-log N-nitrosodimethylamine removal and ∼0.5-log 1,4-dioxane removal) as the full-scale UV-AOP that treats the RO permeate from the purification facility. The estimated full-scale total unit cost (capital plus operation and maintenance costs) of product water produced by the two technologies was estimated to range from $0.91 to $1.12 per cubic meter, depending on the design flow rate of RO concentrate treated, and is estimated to be similar between the two technologies given the +50%/–30% expected accuracy of the Class 5 cost estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Reuse
Water Reuse Multiple-
CiteScore
6.20
自引率
8.90%
发文量
0
审稿时长
7 weeks
期刊最新文献
Removal of Tellurium(IV) from environmental aquatic systems using metal-organic framework material MIL-100(Fe) Effectiveness and health risk assessment of drinking water from different sources treated by local household water treatment methods in Bamenda, Cameroon Adsorption efficiency of biochar produced by aquaculture by-products for removing geosmin in aquaculture environment Enhancing stormwater treatment through ultrafiltration: impact of cleaning chemicals and backwash duration on membrane efficiency cutting-edge research on the action plan for the prevention and control of emerging contaminants in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1