M. Mostafizur Rahman, Nur-Al-Sarah Rafsan, Jannatun Nayeem, Razia Sultana Popy, Mohammad Moniruzzaman, M. Sarwar Jahan
{"title":"硝酸-氢氧化钾稻秆分馏:综合生物炼制的倡议","authors":"M. Mostafizur Rahman, Nur-Al-Sarah Rafsan, Jannatun Nayeem, Razia Sultana Popy, Mohammad Moniruzzaman, M. Sarwar Jahan","doi":"10.1515/npprj-2022-0073","DOIUrl":null,"url":null,"abstract":"Abstract Pulping of rice straw was studied using mild nitric acid in mild conditions. Spent nitric acid was chosen as soil nutrient rather than followed by the liquor recovery. The rice straw was treated with 11.03% nitric acid at 90 °C for 3 h, yielded 53.09% pulp. Nitric acid treated rice straw pulp had high residual lignin and minerals. However, further treatment with 7% potassium hydroxide reduced the residual lignin and produced pulp with kappa number 20.36. The papermaking properties of the nitric acid followed by KOH treated pulp showed better quality than the nitric acid pulp. The spent nitric acid liquor was reused repeatedly, pulp yield decreased and residual lignin content increased in each step of spent nitric acid reusing. The spent nitric acid liquor and potassium hydroxide liquor-mixed together to get a neutral effluent liquor which was rich with potassium, nitrogen and biomass. The nutritional capacity of the effluent liquor was assessed by incubation with control soil. The labile form of organic carbon, nitrogen, potassium phosphorous and iron increased in the incubated soil.","PeriodicalId":19315,"journal":{"name":"Nordic Pulp & Paper Research Journal","volume":"63 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitric acid-potassium hydroxide fractionation of rice straw: an integrated biorefinery initiative\",\"authors\":\"M. Mostafizur Rahman, Nur-Al-Sarah Rafsan, Jannatun Nayeem, Razia Sultana Popy, Mohammad Moniruzzaman, M. Sarwar Jahan\",\"doi\":\"10.1515/npprj-2022-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Pulping of rice straw was studied using mild nitric acid in mild conditions. Spent nitric acid was chosen as soil nutrient rather than followed by the liquor recovery. The rice straw was treated with 11.03% nitric acid at 90 °C for 3 h, yielded 53.09% pulp. Nitric acid treated rice straw pulp had high residual lignin and minerals. However, further treatment with 7% potassium hydroxide reduced the residual lignin and produced pulp with kappa number 20.36. The papermaking properties of the nitric acid followed by KOH treated pulp showed better quality than the nitric acid pulp. The spent nitric acid liquor was reused repeatedly, pulp yield decreased and residual lignin content increased in each step of spent nitric acid reusing. The spent nitric acid liquor and potassium hydroxide liquor-mixed together to get a neutral effluent liquor which was rich with potassium, nitrogen and biomass. The nutritional capacity of the effluent liquor was assessed by incubation with control soil. The labile form of organic carbon, nitrogen, potassium phosphorous and iron increased in the incubated soil.\",\"PeriodicalId\":19315,\"journal\":{\"name\":\"Nordic Pulp & Paper Research Journal\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nordic Pulp & Paper Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/npprj-2022-0073\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Pulp & Paper Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/npprj-2022-0073","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Nitric acid-potassium hydroxide fractionation of rice straw: an integrated biorefinery initiative
Abstract Pulping of rice straw was studied using mild nitric acid in mild conditions. Spent nitric acid was chosen as soil nutrient rather than followed by the liquor recovery. The rice straw was treated with 11.03% nitric acid at 90 °C for 3 h, yielded 53.09% pulp. Nitric acid treated rice straw pulp had high residual lignin and minerals. However, further treatment with 7% potassium hydroxide reduced the residual lignin and produced pulp with kappa number 20.36. The papermaking properties of the nitric acid followed by KOH treated pulp showed better quality than the nitric acid pulp. The spent nitric acid liquor was reused repeatedly, pulp yield decreased and residual lignin content increased in each step of spent nitric acid reusing. The spent nitric acid liquor and potassium hydroxide liquor-mixed together to get a neutral effluent liquor which was rich with potassium, nitrogen and biomass. The nutritional capacity of the effluent liquor was assessed by incubation with control soil. The labile form of organic carbon, nitrogen, potassium phosphorous and iron increased in the incubated soil.
期刊介绍:
Nordic Pulp & Paper Research Journal (NPPRJ) is a peer-reviewed, international scientific journal covering to-date science and technology research in the areas of wood-based biomass:
Pulp and paper: products and processes
Wood constituents: characterization and nanotechnologies
Bio-refining, recovery and energy issues
Utilization of side-streams from pulping processes
Novel fibre-based, sustainable and smart materials.
The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
Topics
Cutting-edge topics such as, but not limited to, the following:
Biorefining, energy issues
Wood fibre characterization and nanotechnology
Side-streams and new products from wood pulping processes
Mechanical pulping
Chemical pulping, recovery and bleaching
Paper technology
Paper chemistry and physics
Coating
Paper-ink-interactions
Recycling
Environmental issues.