{"title":"用更少的观察值选择更多信息的训练集","authors":"Aaron R. Kaufman","doi":"10.1017/pan.2023.19","DOIUrl":null,"url":null,"abstract":"Abstract A standard text-as-data workflow in the social sciences involves identifying a set of documents to be labeled, selecting a random sample of them to label using research assistants, training a supervised learner to label the remaining documents, and validating that model’s performance using standard accuracy metrics. The most resource-intensive component of this is the hand-labeling: carefully reading documents, training research assistants, and paying human coders to label documents in duplicate or more. We show that hand-coding an algorithmically selected rather than a simple-random sample can improve model performance above baseline by as much as 50%, or reduce hand-coding costs by up to two-thirds, in applications predicting (1) U.S. executive-order significance and (2) financial sentiment on social media. We accompany this manuscript with open-source software to implement these tools, which we hope can make supervised learning cheaper and more accessible to researchers.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"59 1","pages":"0"},"PeriodicalIF":4.7000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selecting More Informative Training Sets with Fewer Observations\",\"authors\":\"Aaron R. Kaufman\",\"doi\":\"10.1017/pan.2023.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A standard text-as-data workflow in the social sciences involves identifying a set of documents to be labeled, selecting a random sample of them to label using research assistants, training a supervised learner to label the remaining documents, and validating that model’s performance using standard accuracy metrics. The most resource-intensive component of this is the hand-labeling: carefully reading documents, training research assistants, and paying human coders to label documents in duplicate or more. We show that hand-coding an algorithmically selected rather than a simple-random sample can improve model performance above baseline by as much as 50%, or reduce hand-coding costs by up to two-thirds, in applications predicting (1) U.S. executive-order significance and (2) financial sentiment on social media. We accompany this manuscript with open-source software to implement these tools, which we hope can make supervised learning cheaper and more accessible to researchers.\",\"PeriodicalId\":48270,\"journal\":{\"name\":\"Political Analysis\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Political Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/pan.2023.19\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLITICAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/pan.2023.19","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
Selecting More Informative Training Sets with Fewer Observations
Abstract A standard text-as-data workflow in the social sciences involves identifying a set of documents to be labeled, selecting a random sample of them to label using research assistants, training a supervised learner to label the remaining documents, and validating that model’s performance using standard accuracy metrics. The most resource-intensive component of this is the hand-labeling: carefully reading documents, training research assistants, and paying human coders to label documents in duplicate or more. We show that hand-coding an algorithmically selected rather than a simple-random sample can improve model performance above baseline by as much as 50%, or reduce hand-coding costs by up to two-thirds, in applications predicting (1) U.S. executive-order significance and (2) financial sentiment on social media. We accompany this manuscript with open-source software to implement these tools, which we hope can make supervised learning cheaper and more accessible to researchers.
期刊介绍:
Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.