{"title":"基于本体的数据管理中的可分性及其近似","authors":"Gianluca Cima, Federico Croce, Maurizio Lenzerini","doi":"10.3233/sw-233391","DOIUrl":null,"url":null,"abstract":"Given two datasets, i.e., two sets of tuples of constants, representing positive and negative examples, logical separability is the reasoning task of finding a formula in a certain target query language that separates them. As already pointed out in previous works, this task turns out to be relevant in several application scenarios such as concept learning and generating referring expressions. Besides, if we think of the input datasets of positive and negative examples as composed of tuples of constants classified, respectively, positively and negatively by a black-box model, then the separating formula can be used to provide global post-hoc explanations of such a model. In this paper, we study the separability task in the context of Ontology-based Data Management (OBDM), in which a domain ontology provides a high-level, logic-based specification of a domain of interest, semantically linked through suitable mapping assertions to the data source layer of an information system. Since a formula that properly separates (proper separation) two input datasets does not always exist, our first contribution is to propose (best) approximations of the proper separation, called (minimally) complete and (maximally) sound separations. We do this by presenting a general framework for separability in OBDM. Then, in a scenario that uses by far the most popular languages for the OBDM paradigm, our second contribution is a comprehensive study of three natural computational problems associated with the framework, namely Verification (check whether a given formula is a proper, complete, or sound separation of two given datasets), Existence (check whether a proper, or best approximated separation of two given datasets exists at all), and Computation (compute any proper, or any best approximated separation of two given datasets).","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"59 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separability and Its Approximations in Ontology-based Data Management\",\"authors\":\"Gianluca Cima, Federico Croce, Maurizio Lenzerini\",\"doi\":\"10.3233/sw-233391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two datasets, i.e., two sets of tuples of constants, representing positive and negative examples, logical separability is the reasoning task of finding a formula in a certain target query language that separates them. As already pointed out in previous works, this task turns out to be relevant in several application scenarios such as concept learning and generating referring expressions. Besides, if we think of the input datasets of positive and negative examples as composed of tuples of constants classified, respectively, positively and negatively by a black-box model, then the separating formula can be used to provide global post-hoc explanations of such a model. In this paper, we study the separability task in the context of Ontology-based Data Management (OBDM), in which a domain ontology provides a high-level, logic-based specification of a domain of interest, semantically linked through suitable mapping assertions to the data source layer of an information system. Since a formula that properly separates (proper separation) two input datasets does not always exist, our first contribution is to propose (best) approximations of the proper separation, called (minimally) complete and (maximally) sound separations. We do this by presenting a general framework for separability in OBDM. Then, in a scenario that uses by far the most popular languages for the OBDM paradigm, our second contribution is a comprehensive study of three natural computational problems associated with the framework, namely Verification (check whether a given formula is a proper, complete, or sound separation of two given datasets), Existence (check whether a proper, or best approximated separation of two given datasets exists at all), and Computation (compute any proper, or any best approximated separation of two given datasets).\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-233391\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sw-233391","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Separability and Its Approximations in Ontology-based Data Management
Given two datasets, i.e., two sets of tuples of constants, representing positive and negative examples, logical separability is the reasoning task of finding a formula in a certain target query language that separates them. As already pointed out in previous works, this task turns out to be relevant in several application scenarios such as concept learning and generating referring expressions. Besides, if we think of the input datasets of positive and negative examples as composed of tuples of constants classified, respectively, positively and negatively by a black-box model, then the separating formula can be used to provide global post-hoc explanations of such a model. In this paper, we study the separability task in the context of Ontology-based Data Management (OBDM), in which a domain ontology provides a high-level, logic-based specification of a domain of interest, semantically linked through suitable mapping assertions to the data source layer of an information system. Since a formula that properly separates (proper separation) two input datasets does not always exist, our first contribution is to propose (best) approximations of the proper separation, called (minimally) complete and (maximally) sound separations. We do this by presenting a general framework for separability in OBDM. Then, in a scenario that uses by far the most popular languages for the OBDM paradigm, our second contribution is a comprehensive study of three natural computational problems associated with the framework, namely Verification (check whether a given formula is a proper, complete, or sound separation of two given datasets), Existence (check whether a proper, or best approximated separation of two given datasets exists at all), and Computation (compute any proper, or any best approximated separation of two given datasets).
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.