{"title":"汇编代码的分布式表示","authors":"Kazuki Yoshida, Kaiyu Suzuki, Tomofumi Matsuzawa","doi":"10.3390/computers12110222","DOIUrl":null,"url":null,"abstract":"In recent years, the number of similar software products with many common parts has been increasing due to the reuse and plagiarism of source code in the software development process. Pattern matching, which is an existing method for detecting similarity, cannot detect the similarities between these software products and other programs. It is necessary, for example, to detect similarities based on commonalities in both functionality and control structures. At the same time, detailed software analysis requires manual reverse engineering. Therefore, technologies that automatically identify similarities among the arge amounts of code present in software products in advance can reduce these oads. In this paper, we propose a representation earning model to extract feature expressions from assembly code obtained by statically analyzing such code to determine the similarity between software products. We use assembly code to eliminate the dependence on the existence of source code or differences in development anguage. The proposed approach makes use of Asm2Vec, an existing method, that is capable of generating a vector representation that captures the semantics of assembly code. The proposed method also incorporates information on the program control structure. The control structure can be represented by graph data. Thus, we use graph embedding, a graph vector representation method, to generate a representation vector that reflects both the semantics and the control structure of the assembly code. In our experiments, we generated expression vectors from multiple programs and used clustering to verify the accuracy of the approach in classifying similar programs into the same cluster. The proposed method outperforms existing methods that only consider semantics in both accuracy and execution time.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"44 3-4","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Representation for Assembly Code\",\"authors\":\"Kazuki Yoshida, Kaiyu Suzuki, Tomofumi Matsuzawa\",\"doi\":\"10.3390/computers12110222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the number of similar software products with many common parts has been increasing due to the reuse and plagiarism of source code in the software development process. Pattern matching, which is an existing method for detecting similarity, cannot detect the similarities between these software products and other programs. It is necessary, for example, to detect similarities based on commonalities in both functionality and control structures. At the same time, detailed software analysis requires manual reverse engineering. Therefore, technologies that automatically identify similarities among the arge amounts of code present in software products in advance can reduce these oads. In this paper, we propose a representation earning model to extract feature expressions from assembly code obtained by statically analyzing such code to determine the similarity between software products. We use assembly code to eliminate the dependence on the existence of source code or differences in development anguage. The proposed approach makes use of Asm2Vec, an existing method, that is capable of generating a vector representation that captures the semantics of assembly code. The proposed method also incorporates information on the program control structure. The control structure can be represented by graph data. Thus, we use graph embedding, a graph vector representation method, to generate a representation vector that reflects both the semantics and the control structure of the assembly code. In our experiments, we generated expression vectors from multiple programs and used clustering to verify the accuracy of the approach in classifying similar programs into the same cluster. The proposed method outperforms existing methods that only consider semantics in both accuracy and execution time.\",\"PeriodicalId\":46292,\"journal\":{\"name\":\"Computers\",\"volume\":\"44 3-4\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers12110222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12110222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
In recent years, the number of similar software products with many common parts has been increasing due to the reuse and plagiarism of source code in the software development process. Pattern matching, which is an existing method for detecting similarity, cannot detect the similarities between these software products and other programs. It is necessary, for example, to detect similarities based on commonalities in both functionality and control structures. At the same time, detailed software analysis requires manual reverse engineering. Therefore, technologies that automatically identify similarities among the arge amounts of code present in software products in advance can reduce these oads. In this paper, we propose a representation earning model to extract feature expressions from assembly code obtained by statically analyzing such code to determine the similarity between software products. We use assembly code to eliminate the dependence on the existence of source code or differences in development anguage. The proposed approach makes use of Asm2Vec, an existing method, that is capable of generating a vector representation that captures the semantics of assembly code. The proposed method also incorporates information on the program control structure. The control structure can be represented by graph data. Thus, we use graph embedding, a graph vector representation method, to generate a representation vector that reflects both the semantics and the control structure of the assembly code. In our experiments, we generated expression vectors from multiple programs and used clustering to verify the accuracy of the approach in classifying similar programs into the same cluster. The proposed method outperforms existing methods that only consider semantics in both accuracy and execution time.