{"title":"分布式转动惯量载荷激励模型及其对高速关节转子动态响应的影响","authors":"Fayong Wu, Jie Hong, Xueqi Chen","doi":"10.3390/sym15112009","DOIUrl":null,"url":null,"abstract":"Contemporary aero-engines aim for enhanced efficiency and weight reduction. They are designed to increase rotor operational speed while reducing rotor bending stiffness. This may result in bending deformation in rotor systems within the operational speed range. Such deformation can change the relative positions of rotor components, potentially causing increased mass asymmetry or unbalance. Traditional rotor dynamic models typically assume a constant rotor state. They approximate unbalance using constant mass eccentricities at certain rotor cross-sections. However, this approach has its limitations. This paper focuses on a high-speed jointed rotor system. A distributed rotational inertia load excitation model is proposed. This model explicitly considers the rotor’s variable unbalance state at different operational speeds. The study involves both simulations and experimental investigations. The results show that at high speeds, bending deformation causes the unbalance and rotational inertia load to shift from a concentrated to a distributed state. Notably, the localized rotational inertia moment from thin-disk components like turbine disks becomes significant at high speeds. This results in a rapid increase in bearing load with rotational speed. It also profoundly affects the rotor’s joints, causing interfacial slip and sudden changes in rotor vibration characteristics.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":"63 2","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Rotational Inertia Load Excitation Model and Its Impact on High-Speed Jointed Rotor Dynamic Response\",\"authors\":\"Fayong Wu, Jie Hong, Xueqi Chen\",\"doi\":\"10.3390/sym15112009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contemporary aero-engines aim for enhanced efficiency and weight reduction. They are designed to increase rotor operational speed while reducing rotor bending stiffness. This may result in bending deformation in rotor systems within the operational speed range. Such deformation can change the relative positions of rotor components, potentially causing increased mass asymmetry or unbalance. Traditional rotor dynamic models typically assume a constant rotor state. They approximate unbalance using constant mass eccentricities at certain rotor cross-sections. However, this approach has its limitations. This paper focuses on a high-speed jointed rotor system. A distributed rotational inertia load excitation model is proposed. This model explicitly considers the rotor’s variable unbalance state at different operational speeds. The study involves both simulations and experimental investigations. The results show that at high speeds, bending deformation causes the unbalance and rotational inertia load to shift from a concentrated to a distributed state. Notably, the localized rotational inertia moment from thin-disk components like turbine disks becomes significant at high speeds. This results in a rapid increase in bearing load with rotational speed. It also profoundly affects the rotor’s joints, causing interfacial slip and sudden changes in rotor vibration characteristics.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":\"63 2\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15112009\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15112009","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Distributed Rotational Inertia Load Excitation Model and Its Impact on High-Speed Jointed Rotor Dynamic Response
Contemporary aero-engines aim for enhanced efficiency and weight reduction. They are designed to increase rotor operational speed while reducing rotor bending stiffness. This may result in bending deformation in rotor systems within the operational speed range. Such deformation can change the relative positions of rotor components, potentially causing increased mass asymmetry or unbalance. Traditional rotor dynamic models typically assume a constant rotor state. They approximate unbalance using constant mass eccentricities at certain rotor cross-sections. However, this approach has its limitations. This paper focuses on a high-speed jointed rotor system. A distributed rotational inertia load excitation model is proposed. This model explicitly considers the rotor’s variable unbalance state at different operational speeds. The study involves both simulations and experimental investigations. The results show that at high speeds, bending deformation causes the unbalance and rotational inertia load to shift from a concentrated to a distributed state. Notably, the localized rotational inertia moment from thin-disk components like turbine disks becomes significant at high speeds. This results in a rapid increase in bearing load with rotational speed. It also profoundly affects the rotor’s joints, causing interfacial slip and sudden changes in rotor vibration characteristics.
期刊介绍:
Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.