FAIMS提高变质和/或交联TMT 10-Plex FFPE组织和血浆来源外泌体样品的蛋白质组覆盖率的益处

IF 4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Proteomes Pub Date : 2023-10-24 DOI:10.3390/proteomes11040035
Ana Montero-Calle, María Garranzo-Asensio, Raquel Rejas-González, Jaime Feliu, Marta Mendiola, Alberto Peláez-García, Rodrigo Barderas
{"title":"FAIMS提高变质和/或交联TMT 10-Plex FFPE组织和血浆来源外泌体样品的蛋白质组覆盖率的益处","authors":"Ana Montero-Calle, María Garranzo-Asensio, Raquel Rejas-González, Jaime Feliu, Marta Mendiola, Alberto Peláez-García, Rodrigo Barderas","doi":"10.3390/proteomes11040035","DOIUrl":null,"url":null,"abstract":"The proteome characterization of complex, deteriorated, or cross-linked protein mixtures as paired clinical FFPE or exosome samples isolated from low plasma volumes (250 µL) might be a challenge. In this work, we aimed at investigating the benefits of FAIMS technology coupled to the Orbitrap Exploris 480 mass spectrometer for the TMT quantitative proteomics analyses of these complex samples in comparison to the analysis of protein extracts from cells, frozen tissue, and exosomes isolated from large volume plasma samples (3 mL). TMT experiments were performed using a two-hour gradient LC-MS/MS with or without FAIMS and two compensation voltages (CV = −45 and CV = −60). In the TMT experiments of cells, frozen tissue, or exosomes isolated from large plasma volumes (3 mL) with FAIMS, a limited increase in the number of identified and quantified proteins accompanied by a decrease in the number of peptides identified and quantified was observed. However, we demonstrated here a noticeable improvement (>100%) in the number of peptide and protein identifications and quantifications for the plasma exosomes isolated from low plasma volumes (250 µL) and FFPE tissue samples in TMT experiments with FAIMS in comparison to the LC-MS/MS analysis without FAIMS. Our results highlight the potential of mass spectrometry analyses with FAIMS to increase the depth into the proteome of complex samples derived from deteriorated, cross-linked samples and/or those where the material was scarce, such as FFPE and plasma-derived exosomes from low plasma volumes (250 µL), which might aid in the characterization of their proteome and proteoforms and in the identification of dysregulated proteins that could be used as biomarkers.","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"35 5","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benefits of FAIMS to Improve the Proteome Coverage of Deteriorated and/or Cross-Linked TMT 10-Plex FFPE Tissue and Plasma-Derived Exosomes Samples\",\"authors\":\"Ana Montero-Calle, María Garranzo-Asensio, Raquel Rejas-González, Jaime Feliu, Marta Mendiola, Alberto Peláez-García, Rodrigo Barderas\",\"doi\":\"10.3390/proteomes11040035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proteome characterization of complex, deteriorated, or cross-linked protein mixtures as paired clinical FFPE or exosome samples isolated from low plasma volumes (250 µL) might be a challenge. In this work, we aimed at investigating the benefits of FAIMS technology coupled to the Orbitrap Exploris 480 mass spectrometer for the TMT quantitative proteomics analyses of these complex samples in comparison to the analysis of protein extracts from cells, frozen tissue, and exosomes isolated from large volume plasma samples (3 mL). TMT experiments were performed using a two-hour gradient LC-MS/MS with or without FAIMS and two compensation voltages (CV = −45 and CV = −60). In the TMT experiments of cells, frozen tissue, or exosomes isolated from large plasma volumes (3 mL) with FAIMS, a limited increase in the number of identified and quantified proteins accompanied by a decrease in the number of peptides identified and quantified was observed. However, we demonstrated here a noticeable improvement (>100%) in the number of peptide and protein identifications and quantifications for the plasma exosomes isolated from low plasma volumes (250 µL) and FFPE tissue samples in TMT experiments with FAIMS in comparison to the LC-MS/MS analysis without FAIMS. Our results highlight the potential of mass spectrometry analyses with FAIMS to increase the depth into the proteome of complex samples derived from deteriorated, cross-linked samples and/or those where the material was scarce, such as FFPE and plasma-derived exosomes from low plasma volumes (250 µL), which might aid in the characterization of their proteome and proteoforms and in the identification of dysregulated proteins that could be used as biomarkers.\",\"PeriodicalId\":20877,\"journal\":{\"name\":\"Proteomes\",\"volume\":\"35 5\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/proteomes11040035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes11040035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从低血浆体积(250µL)中分离的配对临床FFPE或外泌体样品中,复杂、变质或交联蛋白混合物的蛋白质组学表征可能是一个挑战。在这项工作中,我们旨在研究FAIMS技术与Orbitrap Exploris 480质谱联用在这些复杂样品的TMT定量蛋白质组学分析中的优势,并与分析细胞、冷冻组织和从大容量血浆样品(3ml)中分离的外泌体的蛋白质提取物进行比较。TMT实验采用两小时梯度LC-MS/MS进行,有或没有FAIMS,两种补偿电压(CV = - 45和CV = - 60)。在用FAIMS对大血浆体积(3ml)分离的细胞、冷冻组织或外泌体进行TMT实验时,观察到鉴定和定量的蛋白质数量有限增加,同时鉴定和定量的肽数量减少。然而,我们在这里证明,与不使用FAIMS的LC-MS/MS分析相比,使用FAIMS的TMT实验中,从低血浆体积(250µL)和FFPE组织样本中分离的血浆外泌体的肽和蛋白质鉴定和定量数量显著提高(>100%)。我们的研究结果强调了使用FAIMS进行质谱分析的潜力,可以增加对来自变质、交联样品和/或材料稀缺的复杂样品的蛋白质组的深度,例如来自低血浆体积(250µL)的FFPE和血浆来源的外泌体,这可能有助于表征其蛋白质组和蛋白质形态,并有助于鉴定可作为生物标志物的失调蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benefits of FAIMS to Improve the Proteome Coverage of Deteriorated and/or Cross-Linked TMT 10-Plex FFPE Tissue and Plasma-Derived Exosomes Samples
The proteome characterization of complex, deteriorated, or cross-linked protein mixtures as paired clinical FFPE or exosome samples isolated from low plasma volumes (250 µL) might be a challenge. In this work, we aimed at investigating the benefits of FAIMS technology coupled to the Orbitrap Exploris 480 mass spectrometer for the TMT quantitative proteomics analyses of these complex samples in comparison to the analysis of protein extracts from cells, frozen tissue, and exosomes isolated from large volume plasma samples (3 mL). TMT experiments were performed using a two-hour gradient LC-MS/MS with or without FAIMS and two compensation voltages (CV = −45 and CV = −60). In the TMT experiments of cells, frozen tissue, or exosomes isolated from large plasma volumes (3 mL) with FAIMS, a limited increase in the number of identified and quantified proteins accompanied by a decrease in the number of peptides identified and quantified was observed. However, we demonstrated here a noticeable improvement (>100%) in the number of peptide and protein identifications and quantifications for the plasma exosomes isolated from low plasma volumes (250 µL) and FFPE tissue samples in TMT experiments with FAIMS in comparison to the LC-MS/MS analysis without FAIMS. Our results highlight the potential of mass spectrometry analyses with FAIMS to increase the depth into the proteome of complex samples derived from deteriorated, cross-linked samples and/or those where the material was scarce, such as FFPE and plasma-derived exosomes from low plasma volumes (250 µL), which might aid in the characterization of their proteome and proteoforms and in the identification of dysregulated proteins that could be used as biomarkers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteomes
Proteomes Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍: Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics
期刊最新文献
The Non-Linear Profile of Aging: U-Shaped Expression of Myostatin, Follistatin and Intermediate Signals in a Longitudinal In Vitro Murine Cell Sarcopenia Model. Assessment of Data-Independent Acquisition Mass Spectrometry (DIA-MS) for the Identification of Single Amino Acid Variants. Transcriptomics Revealed Differentially Expressed Transcription Factors and MicroRNAs in Human Diabetic Foot Ulcers. Comparative Proteome-Wide Abundance Profiling of Yeast Strains Deleted for Cdc48 Adaptors. Multiple Reaction Monitoring-Mass Spectrometric Immunoassay Analysis of Parathyroid Hormone Fragments with Vitamin D Deficiency in Patients with Diabetes Mellitus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1