{"title":"量子尺度下的经典碰撞动力学","authors":"Sebastian Otranto","doi":"10.3390/atoms11110144","DOIUrl":null,"url":null,"abstract":"During the past five decades, classical dynamics have been systematically used to gain insight on collision processes between charged particles and photons with atomic and molecular targets. These methods have proved to be efficient for systems in which numerical intensive quantum mechanical methods are not yet tractable. During the years, reaction cross sections for charge exchange and ionization have been scrutinized at the total and differential levels, leading to a clear understanding of the benefits and limitations inherent in a classical description. In this work, we present a review of the classical trajectory Monte Carlo method, its current status and the perspectives that can be envisaged for the near future.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" 11","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collisional Classical Dynamics at the Quantum Scale\",\"authors\":\"Sebastian Otranto\",\"doi\":\"10.3390/atoms11110144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the past five decades, classical dynamics have been systematically used to gain insight on collision processes between charged particles and photons with atomic and molecular targets. These methods have proved to be efficient for systems in which numerical intensive quantum mechanical methods are not yet tractable. During the years, reaction cross sections for charge exchange and ionization have been scrutinized at the total and differential levels, leading to a clear understanding of the benefits and limitations inherent in a classical description. In this work, we present a review of the classical trajectory Monte Carlo method, its current status and the perspectives that can be envisaged for the near future.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\" 11\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11110144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11110144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Collisional Classical Dynamics at the Quantum Scale
During the past five decades, classical dynamics have been systematically used to gain insight on collision processes between charged particles and photons with atomic and molecular targets. These methods have proved to be efficient for systems in which numerical intensive quantum mechanical methods are not yet tractable. During the years, reaction cross sections for charge exchange and ionization have been scrutinized at the total and differential levels, leading to a clear understanding of the benefits and limitations inherent in a classical description. In this work, we present a review of the classical trajectory Monte Carlo method, its current status and the perspectives that can be envisaged for the near future.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions