小鼠胚胎干细胞的代谢作用和雷帕霉素途径的典型哺乳动物靶点

BioChem Pub Date : 2023-11-09 DOI:10.3390/biochem3040012
Bibiana Correia, Maria Inês Sousa, João Ramalho-Santos
{"title":"小鼠胚胎干细胞的代谢作用和雷帕霉素途径的典型哺乳动物靶点","authors":"Bibiana Correia, Maria Inês Sousa, João Ramalho-Santos","doi":"10.3390/biochem3040012","DOIUrl":null,"url":null,"abstract":"Diapause-like features can be extended to naïve mouse embryonic stem cells (mESCs) to induce paused pluripotency by using INK128 (mTi), a mammalian target of rapamycin (mTOR) inhibitor. As a core integrative pathway, mTOR senses diverse stimuli and translates these cues to coordinate several processes. We have previously shown that the withdrawal of leucine and arginine from the culture medium of naïve mESCs can induce features of a paused-pluripotent state, including reduced cell proliferation, cell cycle arrest, and reductions in glycolytic and oxidative metabolism. However, surprisingly, although mTi did indeed provoke a paused-like state, this was distinct from and less pronounced than what resulted from leucine and arginine removal, and, according to our results, these features did not seem to necessarily be mTOR-driven. Therefore, this possibility should be considered in further experiments, and mTOR inhibition when using INK128 should always be confirmed and not merely assumed when INK128 is present in the culture medium.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic Effects on Mouse Embryonic Stem Cells and the Canonical Mammalian Target of Rapamycin Pathway\",\"authors\":\"Bibiana Correia, Maria Inês Sousa, João Ramalho-Santos\",\"doi\":\"10.3390/biochem3040012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diapause-like features can be extended to naïve mouse embryonic stem cells (mESCs) to induce paused pluripotency by using INK128 (mTi), a mammalian target of rapamycin (mTOR) inhibitor. As a core integrative pathway, mTOR senses diverse stimuli and translates these cues to coordinate several processes. We have previously shown that the withdrawal of leucine and arginine from the culture medium of naïve mESCs can induce features of a paused-pluripotent state, including reduced cell proliferation, cell cycle arrest, and reductions in glycolytic and oxidative metabolism. However, surprisingly, although mTi did indeed provoke a paused-like state, this was distinct from and less pronounced than what resulted from leucine and arginine removal, and, according to our results, these features did not seem to necessarily be mTOR-driven. Therefore, this possibility should be considered in further experiments, and mTOR inhibition when using INK128 should always be confirmed and not merely assumed when INK128 is present in the culture medium.\",\"PeriodicalId\":72357,\"journal\":{\"name\":\"BioChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biochem3040012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioChem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biochem3040012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过使用雷帕霉素(mTOR)抑制剂的哺乳动物靶点INK128 (mTi),可以将滞育样特征扩展到naïve小鼠胚胎干细胞(mESCs)以诱导暂停多能性。作为一个核心的综合通路,mTOR感知不同的刺激并翻译这些线索来协调几个过程。我们之前已经证明,从naïve mESCs培养基中去除亮氨酸和精氨酸可以诱导暂停多能状态的特征,包括细胞增殖减少,细胞周期停滞,糖酵解和氧化代谢减少。然而,令人惊讶的是,尽管mTi确实引起了类似暂停的状态,但这与亮氨酸和精氨酸去除所导致的状态不同,也不那么明显,而且根据我们的结果,这些特征似乎不一定是mtor驱动的。因此,在进一步的实验中应该考虑这种可能性,并且使用INK128时应该始终确认mTOR抑制,而不仅仅是在培养基中存在INK128时假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolic Effects on Mouse Embryonic Stem Cells and the Canonical Mammalian Target of Rapamycin Pathway
Diapause-like features can be extended to naïve mouse embryonic stem cells (mESCs) to induce paused pluripotency by using INK128 (mTi), a mammalian target of rapamycin (mTOR) inhibitor. As a core integrative pathway, mTOR senses diverse stimuli and translates these cues to coordinate several processes. We have previously shown that the withdrawal of leucine and arginine from the culture medium of naïve mESCs can induce features of a paused-pluripotent state, including reduced cell proliferation, cell cycle arrest, and reductions in glycolytic and oxidative metabolism. However, surprisingly, although mTi did indeed provoke a paused-like state, this was distinct from and less pronounced than what resulted from leucine and arginine removal, and, according to our results, these features did not seem to necessarily be mTOR-driven. Therefore, this possibility should be considered in further experiments, and mTOR inhibition when using INK128 should always be confirmed and not merely assumed when INK128 is present in the culture medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Antioxidant, Antibacterial and Enzyme-Inhibitory Properties of Dittany and Thyme Extracts and Their Application in Hydrogel Preparation Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention Novel Tetrazolium-Based Colorimetric Assay for Helicase nsp13 in SARS-CoV-2 Bioinformatic Analysis of Metabolomic Data: From Raw Spectra to Biological Insight New Insights into Hsp90 Structural Plasticity Revealed by cryoEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1