Heather Killen, Merijke Coenraad, Virginia Byrne, Lautaro Cabrera, Kelly Mills, Diane Jass Ketelhut, Jandelyn D. Plane
{"title":"将计算思维融入基础科学的教师教育:基于设计的研究性研究","authors":"Heather Killen, Merijke Coenraad, Virginia Byrne, Lautaro Cabrera, Kelly Mills, Diane Jass Ketelhut, Jandelyn D. Plane","doi":"10.1145/3618115","DOIUrl":null,"url":null,"abstract":"Computational thinking (CT) is playing an increasingly relevant role within disciplinary teaching in elementary school, particularly in science. However, many teachers are unfamiliar with CT, either because their education occurred before the popularization of CT or because CT instruction was not included in their pre-service coursework. For these teachers, CT professional development (PD) becomes a primary mechanism to close their CT knowledge gap. While CT PD has demonstrated success at increasing teacher's CT understanding, researchers have reported varied outcomes in supporting teachers to write CT-integrated lesson plans. To explore how we might support teachers to integrate CT into elementary science, we employed design-based research (DBR) in a dual-track design of in-class CT instruction for pre-service undergraduates within an elementary science methods class paired with a collaborative, multi-month PD opportunity for pre- and in-service teachers. In this article, we reflect on our 5-year period of DBR and present our design insights and implications for CT instruction and curriculum design from each iteration. Our findings on best practices will inform both teacher educators and PD providers within CT education. Our work will also be of interest to researchers considering DBR for technology-based educational projects.","PeriodicalId":48764,"journal":{"name":"ACM Transactions on Computing Education","volume":" 8","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teacher Education to Integrate Computational Thinking into Elementary Science: A Design-Based Research Study\",\"authors\":\"Heather Killen, Merijke Coenraad, Virginia Byrne, Lautaro Cabrera, Kelly Mills, Diane Jass Ketelhut, Jandelyn D. Plane\",\"doi\":\"10.1145/3618115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational thinking (CT) is playing an increasingly relevant role within disciplinary teaching in elementary school, particularly in science. However, many teachers are unfamiliar with CT, either because their education occurred before the popularization of CT or because CT instruction was not included in their pre-service coursework. For these teachers, CT professional development (PD) becomes a primary mechanism to close their CT knowledge gap. While CT PD has demonstrated success at increasing teacher's CT understanding, researchers have reported varied outcomes in supporting teachers to write CT-integrated lesson plans. To explore how we might support teachers to integrate CT into elementary science, we employed design-based research (DBR) in a dual-track design of in-class CT instruction for pre-service undergraduates within an elementary science methods class paired with a collaborative, multi-month PD opportunity for pre- and in-service teachers. In this article, we reflect on our 5-year period of DBR and present our design insights and implications for CT instruction and curriculum design from each iteration. Our findings on best practices will inform both teacher educators and PD providers within CT education. Our work will also be of interest to researchers considering DBR for technology-based educational projects.\",\"PeriodicalId\":48764,\"journal\":{\"name\":\"ACM Transactions on Computing Education\",\"volume\":\" 8\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computing Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3618115\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computing Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618115","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Teacher Education to Integrate Computational Thinking into Elementary Science: A Design-Based Research Study
Computational thinking (CT) is playing an increasingly relevant role within disciplinary teaching in elementary school, particularly in science. However, many teachers are unfamiliar with CT, either because their education occurred before the popularization of CT or because CT instruction was not included in their pre-service coursework. For these teachers, CT professional development (PD) becomes a primary mechanism to close their CT knowledge gap. While CT PD has demonstrated success at increasing teacher's CT understanding, researchers have reported varied outcomes in supporting teachers to write CT-integrated lesson plans. To explore how we might support teachers to integrate CT into elementary science, we employed design-based research (DBR) in a dual-track design of in-class CT instruction for pre-service undergraduates within an elementary science methods class paired with a collaborative, multi-month PD opportunity for pre- and in-service teachers. In this article, we reflect on our 5-year period of DBR and present our design insights and implications for CT instruction and curriculum design from each iteration. Our findings on best practices will inform both teacher educators and PD providers within CT education. Our work will also be of interest to researchers considering DBR for technology-based educational projects.
期刊介绍:
ACM Transactions on Computing Education (TOCE) (formerly named JERIC, Journal on Educational Resources in Computing) covers diverse aspects of computing education: traditional computer science, computer engineering, information technology, and informatics; emerging aspects of computing; and applications of computing to other disciplines. The common characteristics shared by these papers are a scholarly approach to teaching and learning, a broad appeal to educational practitioners, and a clear connection to student learning.