Marc Palardy-Sim, Julieta Barroeta Robles, Marc-André Octeau, Steven Roy, Ali Yousefpour, Stephen Atkinson, Scott Nesbitt, Reza Vaziri, Anoush Poursartip, Manuel Endrass, Lars Larsen, Michael Kupke
{"title":"结构热塑性复合材料连接连续电阻焊在线控制研究","authors":"Marc Palardy-Sim, Julieta Barroeta Robles, Marc-André Octeau, Steven Roy, Ali Yousefpour, Stephen Atkinson, Scott Nesbitt, Reza Vaziri, Anoush Poursartip, Manuel Endrass, Lars Larsen, Michael Kupke","doi":"10.33599/sj.v59no5.01","DOIUrl":null,"url":null,"abstract":"The continuous resistance welding (CRW) process consists of an end-effector which moves along the length of a weld seam, heating a conductive implant while compacting the joint locally throughout the melt and solidification stages of the thermoplastic material. The performance of the joint has been shown to be highly dependent on the process temperature at the weld interface; however, this cannot be measured directly during the process in a non-invasive manner. Other parameters such as boundary conditions, substructure properties, or part geometry may vary along the length of the weld. As such, a physics-based simulation is developed founded upon an “MSTEP” framework which defines how the materials (M), shape (S), tooling (T), and equipment (E) interact to determine the process (P). Detailed finite element (FE) models are developed for thermal analysis based on the weld geometry, boundary conditions, and previously developed and validated melt/crystallization models for the thermoplastic matrix. Experimental CRW tests are presented to validate simulations and calibrate suitable control variables.","PeriodicalId":49577,"journal":{"name":"SAMPE Journal","volume":"25 1","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards In-line Control of Continuous Resistance Welding for Joining Structural Thermoplastic Composites\",\"authors\":\"Marc Palardy-Sim, Julieta Barroeta Robles, Marc-André Octeau, Steven Roy, Ali Yousefpour, Stephen Atkinson, Scott Nesbitt, Reza Vaziri, Anoush Poursartip, Manuel Endrass, Lars Larsen, Michael Kupke\",\"doi\":\"10.33599/sj.v59no5.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuous resistance welding (CRW) process consists of an end-effector which moves along the length of a weld seam, heating a conductive implant while compacting the joint locally throughout the melt and solidification stages of the thermoplastic material. The performance of the joint has been shown to be highly dependent on the process temperature at the weld interface; however, this cannot be measured directly during the process in a non-invasive manner. Other parameters such as boundary conditions, substructure properties, or part geometry may vary along the length of the weld. As such, a physics-based simulation is developed founded upon an “MSTEP” framework which defines how the materials (M), shape (S), tooling (T), and equipment (E) interact to determine the process (P). Detailed finite element (FE) models are developed for thermal analysis based on the weld geometry, boundary conditions, and previously developed and validated melt/crystallization models for the thermoplastic matrix. Experimental CRW tests are presented to validate simulations and calibrate suitable control variables.\",\"PeriodicalId\":49577,\"journal\":{\"name\":\"SAMPE Journal\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAMPE Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33599/sj.v59no5.01\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAMPE Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33599/sj.v59no5.01","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Towards In-line Control of Continuous Resistance Welding for Joining Structural Thermoplastic Composites
The continuous resistance welding (CRW) process consists of an end-effector which moves along the length of a weld seam, heating a conductive implant while compacting the joint locally throughout the melt and solidification stages of the thermoplastic material. The performance of the joint has been shown to be highly dependent on the process temperature at the weld interface; however, this cannot be measured directly during the process in a non-invasive manner. Other parameters such as boundary conditions, substructure properties, or part geometry may vary along the length of the weld. As such, a physics-based simulation is developed founded upon an “MSTEP” framework which defines how the materials (M), shape (S), tooling (T), and equipment (E) interact to determine the process (P). Detailed finite element (FE) models are developed for thermal analysis based on the weld geometry, boundary conditions, and previously developed and validated melt/crystallization models for the thermoplastic matrix. Experimental CRW tests are presented to validate simulations and calibrate suitable control variables.
期刊介绍:
SAMPE Journal readers represent the diversity of the advanced materials and processes industry. Our readers are creative and innovative, they publish, they develop concepts, they win patents, they move the world of materials and processes.
Join thought leaders – academicians, engineers, scientists, business leaders, researchers, suppliers, manufacturers – and become a reader of the industry’s only technical journal dedicated to advanced materials and processes.