结构热塑性复合材料连接连续电阻焊在线控制研究

IF 0.2 4区 材料科学 Q4 ENGINEERING, MULTIDISCIPLINARY SAMPE Journal Pub Date : 2023-09-01 DOI:10.33599/sj.v59no5.01
Marc Palardy-Sim, Julieta Barroeta Robles, Marc-André Octeau, Steven Roy, Ali Yousefpour, Stephen Atkinson, Scott Nesbitt, Reza Vaziri, Anoush Poursartip, Manuel Endrass, Lars Larsen, Michael Kupke
{"title":"结构热塑性复合材料连接连续电阻焊在线控制研究","authors":"Marc Palardy-Sim, Julieta Barroeta Robles, Marc-André Octeau, Steven Roy, Ali Yousefpour, Stephen Atkinson, Scott Nesbitt, Reza Vaziri, Anoush Poursartip, Manuel Endrass, Lars Larsen, Michael Kupke","doi":"10.33599/sj.v59no5.01","DOIUrl":null,"url":null,"abstract":"The continuous resistance welding (CRW) process consists of an end-effector which moves along the length of a weld seam, heating a conductive implant while compacting the joint locally throughout the melt and solidification stages of the thermoplastic material. The performance of the joint has been shown to be highly dependent on the process temperature at the weld interface; however, this cannot be measured directly during the process in a non-invasive manner. Other parameters such as boundary conditions, substructure properties, or part geometry may vary along the length of the weld. As such, a physics-based simulation is developed founded upon an “MSTEP” framework which defines how the materials (M), shape (S), tooling (T), and equipment (E) interact to determine the process (P). Detailed finite element (FE) models are developed for thermal analysis based on the weld geometry, boundary conditions, and previously developed and validated melt/crystallization models for the thermoplastic matrix. Experimental CRW tests are presented to validate simulations and calibrate suitable control variables.","PeriodicalId":49577,"journal":{"name":"SAMPE Journal","volume":"25 1","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards In-line Control of Continuous Resistance Welding for Joining Structural Thermoplastic Composites\",\"authors\":\"Marc Palardy-Sim, Julieta Barroeta Robles, Marc-André Octeau, Steven Roy, Ali Yousefpour, Stephen Atkinson, Scott Nesbitt, Reza Vaziri, Anoush Poursartip, Manuel Endrass, Lars Larsen, Michael Kupke\",\"doi\":\"10.33599/sj.v59no5.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuous resistance welding (CRW) process consists of an end-effector which moves along the length of a weld seam, heating a conductive implant while compacting the joint locally throughout the melt and solidification stages of the thermoplastic material. The performance of the joint has been shown to be highly dependent on the process temperature at the weld interface; however, this cannot be measured directly during the process in a non-invasive manner. Other parameters such as boundary conditions, substructure properties, or part geometry may vary along the length of the weld. As such, a physics-based simulation is developed founded upon an “MSTEP” framework which defines how the materials (M), shape (S), tooling (T), and equipment (E) interact to determine the process (P). Detailed finite element (FE) models are developed for thermal analysis based on the weld geometry, boundary conditions, and previously developed and validated melt/crystallization models for the thermoplastic matrix. Experimental CRW tests are presented to validate simulations and calibrate suitable control variables.\",\"PeriodicalId\":49577,\"journal\":{\"name\":\"SAMPE Journal\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAMPE Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33599/sj.v59no5.01\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAMPE Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33599/sj.v59no5.01","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

连续电阻焊(CRW)工艺包括一个末端执行器,它沿着焊缝的长度移动,加热导电植入物,同时在热塑性材料的熔化和凝固阶段局部压实接头。接头的性能高度依赖于焊接界面处的工艺温度;然而,这不能在过程中以非侵入性的方式直接测量。其他参数,如边界条件、子结构特性或零件几何形状可能沿焊缝长度变化。因此,在“MSTEP”框架的基础上开发了基于物理的模拟,该框架定义了材料(M)、形状(S)、工具(T)和设备(E)如何相互作用以确定工艺(P)。基于焊缝几何形状、边界条件以及先前开发和验证的热塑性基体的熔体/结晶模型,开发了详细的有限元(FE)模型,用于热分析。通过CRW实验验证了仿真结果,并标定了合适的控制变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards In-line Control of Continuous Resistance Welding for Joining Structural Thermoplastic Composites
The continuous resistance welding (CRW) process consists of an end-effector which moves along the length of a weld seam, heating a conductive implant while compacting the joint locally throughout the melt and solidification stages of the thermoplastic material. The performance of the joint has been shown to be highly dependent on the process temperature at the weld interface; however, this cannot be measured directly during the process in a non-invasive manner. Other parameters such as boundary conditions, substructure properties, or part geometry may vary along the length of the weld. As such, a physics-based simulation is developed founded upon an “MSTEP” framework which defines how the materials (M), shape (S), tooling (T), and equipment (E) interact to determine the process (P). Detailed finite element (FE) models are developed for thermal analysis based on the weld geometry, boundary conditions, and previously developed and validated melt/crystallization models for the thermoplastic matrix. Experimental CRW tests are presented to validate simulations and calibrate suitable control variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAMPE Journal
SAMPE Journal 工程技术-材料科学:综合
CiteScore
0.16
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: SAMPE Journal readers represent the diversity of the advanced materials and processes industry. Our readers are creative and innovative, they publish, they develop concepts, they win patents, they move the world of materials and processes. Join thought leaders – academicians, engineers, scientists, business leaders, researchers, suppliers, manufacturers – and become a reader of the industry’s only technical journal dedicated to advanced materials and processes.
期刊最新文献
Thermal and Mechanical Characterization of 3D Printed Continuous Fiber Reinforced Composites Thermoplastic Composite Rate Enhanced Stiffened Skin: A Case Study A Novel additive manufacturing process for multi-matrix fiber reinforced composites Automated Fiber Placement Laminate Level Optimization for Mitigation of Through Thickness Defect Stacking Towards In-line Control of Continuous Resistance Welding for Joining Structural Thermoplastic Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1