kagome晶格中应变诱导的拓扑转变和倾斜狄拉克锥

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY 2D Materials Pub Date : 2023-10-06 DOI:10.1088/2053-1583/acfe88
Miguel Abraham Mojarro Ramirez, Sergio E Ulloa
{"title":"kagome晶格中应变诱导的拓扑转变和倾斜狄拉克锥","authors":"Miguel Abraham Mojarro Ramirez, Sergio E Ulloa","doi":"10.1088/2053-1583/acfe88","DOIUrl":null,"url":null,"abstract":"Abstract We study effects of strain on the electronic properties of the kagome lattice in a tight-binding formalism with spin–orbit coupling (SOC). The degeneracy at the Γ point evolves into a pair of emergent tilted Dirac cones under uniaxial strain, where the anisotropy and tilting of the bands depend on the magnitude and direction of the strain field. SOC opens gaps at the emergent Dirac points, making the flatband topological, characterized by a nontrivial <?CDATA $\\mathbb{Z}_2$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:math> index. Strains of a few percent drive the system into trivial or topological phases. This confirms that moderate strain can be used to engineer anisotropic Dirac bands with tunable properties to study new phases in kagome lattices.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"19 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-induced topological transitions and tilted Dirac cones in kagome lattices\",\"authors\":\"Miguel Abraham Mojarro Ramirez, Sergio E Ulloa\",\"doi\":\"10.1088/2053-1583/acfe88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study effects of strain on the electronic properties of the kagome lattice in a tight-binding formalism with spin–orbit coupling (SOC). The degeneracy at the Γ point evolves into a pair of emergent tilted Dirac cones under uniaxial strain, where the anisotropy and tilting of the bands depend on the magnitude and direction of the strain field. SOC opens gaps at the emergent Dirac points, making the flatband topological, characterized by a nontrivial <?CDATA $\\\\mathbb{Z}_2$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> </mml:math> index. Strains of a few percent drive the system into trivial or topological phases. This confirms that moderate strain can be used to engineer anisotropic Dirac bands with tunable properties to study new phases in kagome lattices.\",\"PeriodicalId\":6812,\"journal\":{\"name\":\"2D Materials\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2D Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/acfe88\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2053-1583/acfe88","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了应变对具有自旋-轨道耦合(SOC)的紧密结合形式下kagome晶格电子性质的影响。在单轴应变作用下,Γ点处的简并演化为一对突现的倾斜狄拉克锥,其中带的各向异性和倾斜程度取决于应变场的大小和方向。SOC在出现的Dirac点上打开间隙,使其具有非平凡的z2指数的平坦带拓扑结构。百分之几的应变使系统进入平凡或拓扑阶段。这证实了中等应变可以用于设计具有可调谐特性的各向异性狄拉克带,以研究kagome晶格中的新相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strain-induced topological transitions and tilted Dirac cones in kagome lattices
Abstract We study effects of strain on the electronic properties of the kagome lattice in a tight-binding formalism with spin–orbit coupling (SOC). The degeneracy at the Γ point evolves into a pair of emergent tilted Dirac cones under uniaxial strain, where the anisotropy and tilting of the bands depend on the magnitude and direction of the strain field. SOC opens gaps at the emergent Dirac points, making the flatband topological, characterized by a nontrivial Z 2 index. Strains of a few percent drive the system into trivial or topological phases. This confirms that moderate strain can be used to engineer anisotropic Dirac bands with tunable properties to study new phases in kagome lattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
期刊最新文献
Constructing three-dimensional GO/CNT@NMP aerogels towards primary lithium metal batteries Two-dimensional Janus MXTe (M = Hf, Zr; X = S, Se) piezoelectrocatalysts: a comprehensive investigation of its electronic, synthesis feasibility, electric polarization, and hydrogen evolution reaction activity The future of Xenes beyond graphene: challenges and perspective Soft-carbon-tuned hard carbon anode for ultrahigh-rate sodium storage Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1