绿色合成氧化锶纳米粒子和植物提取物制备的锶基纳米复合材料:综述

IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Reviews in Inorganic Chemistry Pub Date : 2023-10-06 DOI:10.1515/revic-2023-0011
Muhammad Imran Din, Sania Rehman, Zaib Hussain, Rida Khalid
{"title":"绿色合成氧化锶纳米粒子和植物提取物制备的锶基纳米复合材料:综述","authors":"Muhammad Imran Din, Sania Rehman, Zaib Hussain, Rida Khalid","doi":"10.1515/revic-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract Recently, strontium oxide nanoparticles (SrO NPs) have become the center of attention due to potential features and promising applications. The physicochemical approaches possess many limitations including extreme experimental conditions, highly complex instruments and use of hazardous chemicals. An eco-friendly and sustainable approach from biogenic sources for formation of SrO NPs is an emerging trend nowadays to effectively replace conventional approaches. This review study all those aspects that facilitate the reader for understanding all biogenic approaches of SrO NPs for their use in different applications with less toxicity issues. In this study, firstly we discuss in detail about plant and other biogenic assemblies based on the synthesis of SrO NPs after which parameters affecting the synthesis of SrO NPs are discussed and finally excellent biomedical applications of SrO NPs along with mechanism are summarized. The literature also showed that green synthesized SrO NPs are highly biocompatible in nature and showed excellent anti-bacterial, anti-oxidant and anti-fungal potential. Hence, this study will provide an understanding to researchers about recent trends for the formation of SrO NPs through different biogenic assemblies and their potential biomedical applications.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of strontium oxide nanoparticles and strontium based nanocomposites prepared by plant extract: a critical review\",\"authors\":\"Muhammad Imran Din, Sania Rehman, Zaib Hussain, Rida Khalid\",\"doi\":\"10.1515/revic-2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, strontium oxide nanoparticles (SrO NPs) have become the center of attention due to potential features and promising applications. The physicochemical approaches possess many limitations including extreme experimental conditions, highly complex instruments and use of hazardous chemicals. An eco-friendly and sustainable approach from biogenic sources for formation of SrO NPs is an emerging trend nowadays to effectively replace conventional approaches. This review study all those aspects that facilitate the reader for understanding all biogenic approaches of SrO NPs for their use in different applications with less toxicity issues. In this study, firstly we discuss in detail about plant and other biogenic assemblies based on the synthesis of SrO NPs after which parameters affecting the synthesis of SrO NPs are discussed and finally excellent biomedical applications of SrO NPs along with mechanism are summarized. The literature also showed that green synthesized SrO NPs are highly biocompatible in nature and showed excellent anti-bacterial, anti-oxidant and anti-fungal potential. Hence, this study will provide an understanding to researchers about recent trends for the formation of SrO NPs through different biogenic assemblies and their potential biomedical applications.\",\"PeriodicalId\":21162,\"journal\":{\"name\":\"Reviews in Inorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Inorganic Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/revic-2023-0011\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Inorganic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/revic-2023-0011","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

近年来,氧化锶纳米颗粒(SrO NPs)因其潜在的特性和广阔的应用前景而成为人们关注的焦点。物理化学方法具有许多局限性,包括极端的实验条件,高度复杂的仪器和使用危险化学品。利用生物源形成SrO NPs的生态友好和可持续的方法是当今有效取代传统方法的新兴趋势。这篇综述研究了所有有助于读者理解SrO NPs的所有生物源性方法,以及它们在不同应用中的低毒性问题。本文首先详细讨论了基于SrO NPs合成的植物和其他生物源组装体,然后讨论了影响SrO NPs合成的参数,最后总结了SrO NPs在生物医学上的良好应用及其机理。文献还表明,绿色合成的SrO NPs在自然界中具有高度的生物相容性,并具有良好的抗菌、抗氧化和抗真菌潜力。因此,本研究将有助于研究人员了解SrO NPs通过不同生物源组装形成的最新趋势及其潜在的生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Green synthesis of strontium oxide nanoparticles and strontium based nanocomposites prepared by plant extract: a critical review
Abstract Recently, strontium oxide nanoparticles (SrO NPs) have become the center of attention due to potential features and promising applications. The physicochemical approaches possess many limitations including extreme experimental conditions, highly complex instruments and use of hazardous chemicals. An eco-friendly and sustainable approach from biogenic sources for formation of SrO NPs is an emerging trend nowadays to effectively replace conventional approaches. This review study all those aspects that facilitate the reader for understanding all biogenic approaches of SrO NPs for their use in different applications with less toxicity issues. In this study, firstly we discuss in detail about plant and other biogenic assemblies based on the synthesis of SrO NPs after which parameters affecting the synthesis of SrO NPs are discussed and finally excellent biomedical applications of SrO NPs along with mechanism are summarized. The literature also showed that green synthesized SrO NPs are highly biocompatible in nature and showed excellent anti-bacterial, anti-oxidant and anti-fungal potential. Hence, this study will provide an understanding to researchers about recent trends for the formation of SrO NPs through different biogenic assemblies and their potential biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Inorganic Chemistry
Reviews in Inorganic Chemistry 化学-分析化学
CiteScore
7.30
自引率
4.90%
发文量
20
审稿时长
1 months
期刊介绍: Reviews in Inorganic Chemistry (REVIC) is a quarterly, peer-reviewed journal that focuses on developments in inorganic chemistry. Technical reviews offer detailed synthesis protocols, reviews of methodology and descriptions of apparatus. Topics are treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are committed to high quality standards and rapid handling of the review and publication process. The journal publishes all aspects of solid-state, molecular and surface chemistry. Topics may be treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are commited to high quality standards and rapid handling of the review and publication process. Topics: -Main group chemistry- Transition metal chemistry- Coordination chemistry- Organometallic chemistry- Catalysis- Bioinorganic chemistry- Supramolecular chemistry- Ionic liquids
期刊最新文献
Comparative analysis of dye degradation methods: unveiling the most effective and environmentally sustainable approaches, a critical review Advances in synthesis and anticancer applications of organo-tellurium compounds A comprehensive overview of fabrication of biogenic multifunctional metal/metal oxide nanoparticles and applications Effect of doping of metal salts on polymers and their applications in various fields A review of coordination compounds: structure, stability, and biological significance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1