基于深度学习的下行无小区大规模多输入多输出视频通信系统跨层功率分配

IF 2.2 3区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Symmetry-Basel Pub Date : 2023-10-24 DOI:10.3390/sym15111968
Wen-Yen Lin, Tin-Hao Chang, Shu-Ming Tseng
{"title":"基于深度学习的下行无小区大规模多输入多输出视频通信系统跨层功率分配","authors":"Wen-Yen Lin, Tin-Hao Chang, Shu-Ming Tseng","doi":"10.3390/sym15111968","DOIUrl":null,"url":null,"abstract":"We propose a deep learning-based cross-layer power allocation method for asymmetric cell-free massive MIMO video communication systems. The proposed cross-layer approach considers physical layer channel state information (CSI) and the application layer rate distortion (RD) function, and it aims to enhance video quality in terms of peak signal-to-noise ratio (PSNR). Our study develops a decentralized deep neural network (DNN) model to capture intricate system patterns, enabling accurate and efficient power allocation decisions. The proposed cross-layer approach includes unsupervised and hybrid (supervised/unsupervised) learning models. The numerical results show that the hybrid method achieves convergence with just 50% of the iterations required by the unsupervised learning model and that it achieves a 1 dB gain in PSNR over the baseline physical layer scheme.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":"46 6","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Cross-Layer Power Allocation for Downlink Cell-Free Massive Multiple-Input–Multiple-Output Video Communication Systems\",\"authors\":\"Wen-Yen Lin, Tin-Hao Chang, Shu-Ming Tseng\",\"doi\":\"10.3390/sym15111968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a deep learning-based cross-layer power allocation method for asymmetric cell-free massive MIMO video communication systems. The proposed cross-layer approach considers physical layer channel state information (CSI) and the application layer rate distortion (RD) function, and it aims to enhance video quality in terms of peak signal-to-noise ratio (PSNR). Our study develops a decentralized deep neural network (DNN) model to capture intricate system patterns, enabling accurate and efficient power allocation decisions. The proposed cross-layer approach includes unsupervised and hybrid (supervised/unsupervised) learning models. The numerical results show that the hybrid method achieves convergence with just 50% of the iterations required by the unsupervised learning model and that it achieves a 1 dB gain in PSNR over the baseline physical layer scheme.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":\"46 6\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15111968\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15111968","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

针对非对称无小区大规模MIMO视频通信系统,提出了一种基于深度学习的跨层功率分配方法。该跨层方法考虑了物理层信道状态信息(CSI)和应用层速率失真(RD)函数,旨在从峰值信噪比(PSNR)方面提高视频质量。我们的研究开发了一个分散的深度神经网络(DNN)模型来捕获复杂的系统模式,从而实现准确有效的功率分配决策。提出的跨层方法包括无监督和混合(监督/无监督)学习模型。数值结果表明,混合方法的收敛速度仅为无监督学习模型所需迭代次数的50%,并且比基线物理层方案的PSNR增益为1 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning-Based Cross-Layer Power Allocation for Downlink Cell-Free Massive Multiple-Input–Multiple-Output Video Communication Systems
We propose a deep learning-based cross-layer power allocation method for asymmetric cell-free massive MIMO video communication systems. The proposed cross-layer approach considers physical layer channel state information (CSI) and the application layer rate distortion (RD) function, and it aims to enhance video quality in terms of peak signal-to-noise ratio (PSNR). Our study develops a decentralized deep neural network (DNN) model to capture intricate system patterns, enabling accurate and efficient power allocation decisions. The proposed cross-layer approach includes unsupervised and hybrid (supervised/unsupervised) learning models. The numerical results show that the hybrid method achieves convergence with just 50% of the iterations required by the unsupervised learning model and that it achieves a 1 dB gain in PSNR over the baseline physical layer scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symmetry-Basel
Symmetry-Basel MULTIDISCIPLINARY SCIENCES-
CiteScore
5.40
自引率
11.10%
发文量
2276
审稿时长
14.88 days
期刊介绍: Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.
期刊最新文献
The Chromatic Entropy of Linear Supertrees and Its Application Angular-Momentum Modes in a Bosonic Condensate Trapped in the Inverse-Square Potential Development of Compact Bandpass Filter Using Symmetrical Metamaterial Structures for GPS, ISM, Wi-MAX, and WLAN Applications Entanglement and Symmetry Structure of N(= 3) Quantum Oscillators with Disparate Coupling Strengths in a Common Quantum Field Bath Nuclear Shape-Phase Transitions and the Sextic Oscillator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1