Deshinta Arrova Dewi, Rajermani Thinakan, Malathy Batumalay, Tri Basuki Kurniawan
{"title":"可持续医疗保健应用的普适计算和可穿戴设备模型","authors":"Deshinta Arrova Dewi, Rajermani Thinakan, Malathy Batumalay, Tri Basuki Kurniawan","doi":"10.14569/ijacsa.2023.0141056","DOIUrl":null,"url":null,"abstract":"The user’s demands in the system supported by the Internet of Things are frequently controlled effectively using the pervasive computing system. Pervasive computing is a term used to describe a system that integrates several communication and distributed network technologies. Even so, it properly accommodates user needs. It is quite difficult to be inventive in the pervasive computing system when it comes to the delivery of information, handling standards, and extending heterogeneous aid for scattered clients. In this view, our paper intends to utilize a Dispersed and Elastic Computing Model (DECM) to enable proper and reliable communication for people who are using IoT-based wearable healthcare devices. Recurrent Reinforcement Learning (RRL) is used in the suggested model and the system that is connected to analyze resource allocation in response to requirements and other allocative factors. To provide effective data transmission over wearable medical devices, the built system gives managing mobility additional consideration to resource allocation and distribution. The results show that the pervasive computing system provides services to the user with reduced latency and an increased rate of communication for healthcare wearable devices based on the determined demands of the resources. This is an important aspect of sustainable healthcare. We employ the assessment metrics consisting of request failure, response time, managed and backlogged requests, bandwidth, and storage to capture the consistency of the proposed model.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model for Pervasive Computing and Wearable Devices for Sustainable Healthcare Applications\",\"authors\":\"Deshinta Arrova Dewi, Rajermani Thinakan, Malathy Batumalay, Tri Basuki Kurniawan\",\"doi\":\"10.14569/ijacsa.2023.0141056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The user’s demands in the system supported by the Internet of Things are frequently controlled effectively using the pervasive computing system. Pervasive computing is a term used to describe a system that integrates several communication and distributed network technologies. Even so, it properly accommodates user needs. It is quite difficult to be inventive in the pervasive computing system when it comes to the delivery of information, handling standards, and extending heterogeneous aid for scattered clients. In this view, our paper intends to utilize a Dispersed and Elastic Computing Model (DECM) to enable proper and reliable communication for people who are using IoT-based wearable healthcare devices. Recurrent Reinforcement Learning (RRL) is used in the suggested model and the system that is connected to analyze resource allocation in response to requirements and other allocative factors. To provide effective data transmission over wearable medical devices, the built system gives managing mobility additional consideration to resource allocation and distribution. The results show that the pervasive computing system provides services to the user with reduced latency and an increased rate of communication for healthcare wearable devices based on the determined demands of the resources. This is an important aspect of sustainable healthcare. We employ the assessment metrics consisting of request failure, response time, managed and backlogged requests, bandwidth, and storage to capture the consistency of the proposed model.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0141056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0141056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Model for Pervasive Computing and Wearable Devices for Sustainable Healthcare Applications
The user’s demands in the system supported by the Internet of Things are frequently controlled effectively using the pervasive computing system. Pervasive computing is a term used to describe a system that integrates several communication and distributed network technologies. Even so, it properly accommodates user needs. It is quite difficult to be inventive in the pervasive computing system when it comes to the delivery of information, handling standards, and extending heterogeneous aid for scattered clients. In this view, our paper intends to utilize a Dispersed and Elastic Computing Model (DECM) to enable proper and reliable communication for people who are using IoT-based wearable healthcare devices. Recurrent Reinforcement Learning (RRL) is used in the suggested model and the system that is connected to analyze resource allocation in response to requirements and other allocative factors. To provide effective data transmission over wearable medical devices, the built system gives managing mobility additional consideration to resource allocation and distribution. The results show that the pervasive computing system provides services to the user with reduced latency and an increased rate of communication for healthcare wearable devices based on the determined demands of the resources. This is an important aspect of sustainable healthcare. We employ the assessment metrics consisting of request failure, response time, managed and backlogged requests, bandwidth, and storage to capture the consistency of the proposed model.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications