形状稳定气凝胶基相变材料的制备、分类及应用综述

Q1 Engineering Energy and Built Environment Pub Date : 2023-11-02 DOI:10.1016/j.enbenv.2023.11.001
Xiangfei Kong, Ruiming Nie, Jianjuan Yuan
{"title":"形状稳定气凝胶基相变材料的制备、分类及应用综述","authors":"Xiangfei Kong,&nbsp;Ruiming Nie,&nbsp;Jianjuan Yuan","doi":"10.1016/j.enbenv.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid leakage of PCM and thermophysical performance defects seriously affect the application prospect of PCMs. Aerogels provide an excellent solution for packaging and performance improvement of PCMs with its ultra-high specific surface area and low density and give PCMs other functions besides energy storage, such as energy conversion (photothermal/electrothermal conversion, magnetic thermal/acoustic thermal conversion), thermal management (battery thermal management, electronic thermal management), thermal infrared stealth, building materials, etc. In this paper, firstly, the preparation method and multifunctional response mechanism of aerogel-based PCMs are systematically described, and the improvement of thermophysical and mechanical properties of various aerogel-based PCMs is reviewed from the perspective of aerogel preparation. Then, according to the different application scenarios of aerogel-based PCMs, the advanced functions of aerogel-based PCMs are reviewed, and the multifunctional effects of different materials in aerogel-based PCMs are compared. Finally, some insightful guidance and suggestions for the research and development of aerogel-based PCMs are put forward.</div></div>","PeriodicalId":33659,"journal":{"name":"Energy and Built Environment","volume":"6 2","pages":"Pages 230-247"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of shape stabilized aerogel-based phase change materials for preparation, classification and applications\",\"authors\":\"Xiangfei Kong,&nbsp;Ruiming Nie,&nbsp;Jianjuan Yuan\",\"doi\":\"10.1016/j.enbenv.2023.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Liquid leakage of PCM and thermophysical performance defects seriously affect the application prospect of PCMs. Aerogels provide an excellent solution for packaging and performance improvement of PCMs with its ultra-high specific surface area and low density and give PCMs other functions besides energy storage, such as energy conversion (photothermal/electrothermal conversion, magnetic thermal/acoustic thermal conversion), thermal management (battery thermal management, electronic thermal management), thermal infrared stealth, building materials, etc. In this paper, firstly, the preparation method and multifunctional response mechanism of aerogel-based PCMs are systematically described, and the improvement of thermophysical and mechanical properties of various aerogel-based PCMs is reviewed from the perspective of aerogel preparation. Then, according to the different application scenarios of aerogel-based PCMs, the advanced functions of aerogel-based PCMs are reviewed, and the multifunctional effects of different materials in aerogel-based PCMs are compared. Finally, some insightful guidance and suggestions for the research and development of aerogel-based PCMs are put forward.</div></div>\",\"PeriodicalId\":33659,\"journal\":{\"name\":\"Energy and Built Environment\",\"volume\":\"6 2\",\"pages\":\"Pages 230-247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Built Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666123323001058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666123323001058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

PCM的漏液和热物理性能缺陷严重影响了PCM的应用前景。气凝胶以其超高比表面积和低密度为pcm的封装和性能提升提供了极好的解决方案,并赋予pcm除储能外的其他功能,如能量转换(光热/电热转换、磁热/声热转换)、热管理(电池热管理、电子热管理)、热红外隐身、建筑材料等。本文首先系统介绍了气凝胶基PCMs的制备方法和多功能响应机理,并从气凝胶制备的角度综述了各种气凝胶基PCMs的热物理性能和力学性能的改善。然后,根据气凝胶基PCMs的不同应用场景,综述了气凝胶基PCMs的先进功能,并比较了不同材料在气凝胶基PCMs中的多功能效果。最后,对气凝胶基PCMs的研究和发展提出了一些有见地的指导和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of shape stabilized aerogel-based phase change materials for preparation, classification and applications
Liquid leakage of PCM and thermophysical performance defects seriously affect the application prospect of PCMs. Aerogels provide an excellent solution for packaging and performance improvement of PCMs with its ultra-high specific surface area and low density and give PCMs other functions besides energy storage, such as energy conversion (photothermal/electrothermal conversion, magnetic thermal/acoustic thermal conversion), thermal management (battery thermal management, electronic thermal management), thermal infrared stealth, building materials, etc. In this paper, firstly, the preparation method and multifunctional response mechanism of aerogel-based PCMs are systematically described, and the improvement of thermophysical and mechanical properties of various aerogel-based PCMs is reviewed from the perspective of aerogel preparation. Then, according to the different application scenarios of aerogel-based PCMs, the advanced functions of aerogel-based PCMs are reviewed, and the multifunctional effects of different materials in aerogel-based PCMs are compared. Finally, some insightful guidance and suggestions for the research and development of aerogel-based PCMs are put forward.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and Built Environment
Energy and Built Environment Engineering-Building and Construction
CiteScore
15.90
自引率
0.00%
发文量
104
审稿时长
49 days
期刊最新文献
Editorial Board Editorial Board Editorial Board Overview of the application status and development trends of hydropower and geothermal power in New Zealand Study on the Deposition Characteristics of Fine Particles at Local Components in Air Conditioning Ventilation Ducts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1