Khadijeh Amani , Morteza Delavari , Sadraddin Amini , Hossein Azizi , Yoshihiro Asahara , Tanya Furman , Amir Ali Tabbakh Shabani , Abbas Asiabanha , Ali Mohammadi
{"title":"阿尔伯兹西部塔雷什山脉岩浆岩的地球化学、Sr-Nd 同位素和锆石 U-Pb 定年:欧亚大陆南缘晚白垩世演化的新见解","authors":"Khadijeh Amani , Morteza Delavari , Sadraddin Amini , Hossein Azizi , Yoshihiro Asahara , Tanya Furman , Amir Ali Tabbakh Shabani , Abbas Asiabanha , Ali Mohammadi","doi":"10.1016/j.chemer.2023.126042","DOIUrl":null,"url":null,"abstract":"<div><p>The eastern flank of the Talesh range of western Alborz, northwestern Iran, exposes volumetrically significant Late Cretaceous volcanic and volcaniclastic associations as well as cross-cutting dykes and minor subvolcanic equivalents. The volcanic units appear as massive to pillowed flows interlayered with volcaniclastic beds and subordinate limestones. We present new field data, zircon U<img>Pb ages, bulk-rock major and trace element geochemistry, and Sr<img>Nd isotopes on the igneous rock suite. Geochemical data show that the lava units and dykes are mainly basaltic in composition with minor basaltic andesites and trachytes. They form two contrasting series of arc-related calc-alkaline (Group 1) and OIB-like (Group 2) rocks. The zircon U<img>Pb age of Group 1 rocks is 95.6 ± 1.8 Ma (2σ), whereas for Group 2 rocks, cross-cutting relationships and stratigraphic constraints indicate a somewhat younger age. Group 1 rocks have <sup>87</sup>Sr/<sup>86</sup>Sr<sub>(i)</sub> varying from 0.7038 to 0.7070 and ε<sub>Nd</sub>(t) values ranging from +0.5 to +5.0. Group 2 rocks have <sup>87</sup>Sr/<sup>86</sup>Sr<sub>(i)</sub> = 0.7040–0.7065 and ε<sub>Nd</sub>(t) from −3.0 to +3.7. Trace element and isotopic modelling shows that the primitive Group 1 magmas were derived from a metasomatized mantle source enriched by the addition of ∼6–10 % sediment melt component, while Group 2 rocks are consistent with melts of an asthenospheric mantle source enriched by ∼1–5 % EMII component. Trace element modelling indicates that Group 1 rocks formed from ∼6–13 % partial melts of a spinel-garnet lherzolite with garnet:spinel ratios of 45:55 to 10:90, whereas primitive Group 2 melts were generated through ∼1–3 % partial melting of a garnet-spinel-lherzolite with garnet:spinel ratios of 90:10 to 80:20. We propose a geodynamic model in which a north-dipping Neotethyan slab beneath the western Alborz (Talesh area) continental margin produced arc assemblages of Group 1 rocks and subsequent slab rollback led to the upwelling of an asthenospheric mantle to generate OIB-like magmatism of Group 2 rocks in an extensional intra-arc to back-arc setting.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 1","pages":"Article 126042"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009281923000934/pdfft?md5=f76cd7e4a39beea0703503856d759af5&pid=1-s2.0-S0009281923000934-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Geochemistry, Sr-Nd isotopes and zircon U-Pb dating of magmatic rocks from the Talesh range, western Alborz: New insights into Late Cretaceous evolution of the southern Eurasian margin\",\"authors\":\"Khadijeh Amani , Morteza Delavari , Sadraddin Amini , Hossein Azizi , Yoshihiro Asahara , Tanya Furman , Amir Ali Tabbakh Shabani , Abbas Asiabanha , Ali Mohammadi\",\"doi\":\"10.1016/j.chemer.2023.126042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The eastern flank of the Talesh range of western Alborz, northwestern Iran, exposes volumetrically significant Late Cretaceous volcanic and volcaniclastic associations as well as cross-cutting dykes and minor subvolcanic equivalents. The volcanic units appear as massive to pillowed flows interlayered with volcaniclastic beds and subordinate limestones. We present new field data, zircon U<img>Pb ages, bulk-rock major and trace element geochemistry, and Sr<img>Nd isotopes on the igneous rock suite. Geochemical data show that the lava units and dykes are mainly basaltic in composition with minor basaltic andesites and trachytes. They form two contrasting series of arc-related calc-alkaline (Group 1) and OIB-like (Group 2) rocks. The zircon U<img>Pb age of Group 1 rocks is 95.6 ± 1.8 Ma (2σ), whereas for Group 2 rocks, cross-cutting relationships and stratigraphic constraints indicate a somewhat younger age. Group 1 rocks have <sup>87</sup>Sr/<sup>86</sup>Sr<sub>(i)</sub> varying from 0.7038 to 0.7070 and ε<sub>Nd</sub>(t) values ranging from +0.5 to +5.0. Group 2 rocks have <sup>87</sup>Sr/<sup>86</sup>Sr<sub>(i)</sub> = 0.7040–0.7065 and ε<sub>Nd</sub>(t) from −3.0 to +3.7. Trace element and isotopic modelling shows that the primitive Group 1 magmas were derived from a metasomatized mantle source enriched by the addition of ∼6–10 % sediment melt component, while Group 2 rocks are consistent with melts of an asthenospheric mantle source enriched by ∼1–5 % EMII component. Trace element modelling indicates that Group 1 rocks formed from ∼6–13 % partial melts of a spinel-garnet lherzolite with garnet:spinel ratios of 45:55 to 10:90, whereas primitive Group 2 melts were generated through ∼1–3 % partial melting of a garnet-spinel-lherzolite with garnet:spinel ratios of 90:10 to 80:20. We propose a geodynamic model in which a north-dipping Neotethyan slab beneath the western Alborz (Talesh area) continental margin produced arc assemblages of Group 1 rocks and subsequent slab rollback led to the upwelling of an asthenospheric mantle to generate OIB-like magmatism of Group 2 rocks in an extensional intra-arc to back-arc setting.</p></div>\",\"PeriodicalId\":55973,\"journal\":{\"name\":\"Chemie Der Erde-Geochemistry\",\"volume\":\"84 1\",\"pages\":\"Article 126042\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0009281923000934/pdfft?md5=f76cd7e4a39beea0703503856d759af5&pid=1-s2.0-S0009281923000934-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Der Erde-Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009281923000934\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281923000934","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Geochemistry, Sr-Nd isotopes and zircon U-Pb dating of magmatic rocks from the Talesh range, western Alborz: New insights into Late Cretaceous evolution of the southern Eurasian margin
The eastern flank of the Talesh range of western Alborz, northwestern Iran, exposes volumetrically significant Late Cretaceous volcanic and volcaniclastic associations as well as cross-cutting dykes and minor subvolcanic equivalents. The volcanic units appear as massive to pillowed flows interlayered with volcaniclastic beds and subordinate limestones. We present new field data, zircon UPb ages, bulk-rock major and trace element geochemistry, and SrNd isotopes on the igneous rock suite. Geochemical data show that the lava units and dykes are mainly basaltic in composition with minor basaltic andesites and trachytes. They form two contrasting series of arc-related calc-alkaline (Group 1) and OIB-like (Group 2) rocks. The zircon UPb age of Group 1 rocks is 95.6 ± 1.8 Ma (2σ), whereas for Group 2 rocks, cross-cutting relationships and stratigraphic constraints indicate a somewhat younger age. Group 1 rocks have 87Sr/86Sr(i) varying from 0.7038 to 0.7070 and εNd(t) values ranging from +0.5 to +5.0. Group 2 rocks have 87Sr/86Sr(i) = 0.7040–0.7065 and εNd(t) from −3.0 to +3.7. Trace element and isotopic modelling shows that the primitive Group 1 magmas were derived from a metasomatized mantle source enriched by the addition of ∼6–10 % sediment melt component, while Group 2 rocks are consistent with melts of an asthenospheric mantle source enriched by ∼1–5 % EMII component. Trace element modelling indicates that Group 1 rocks formed from ∼6–13 % partial melts of a spinel-garnet lherzolite with garnet:spinel ratios of 45:55 to 10:90, whereas primitive Group 2 melts were generated through ∼1–3 % partial melting of a garnet-spinel-lherzolite with garnet:spinel ratios of 90:10 to 80:20. We propose a geodynamic model in which a north-dipping Neotethyan slab beneath the western Alborz (Talesh area) continental margin produced arc assemblages of Group 1 rocks and subsequent slab rollback led to the upwelling of an asthenospheric mantle to generate OIB-like magmatism of Group 2 rocks in an extensional intra-arc to back-arc setting.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry