{"title":"螺旋轨迹对白矮星光谱的影响:高里德伯态","authors":"Spiros Alexiou","doi":"10.3390/atoms11110141","DOIUrl":null,"url":null,"abstract":"It has been recently suggested that white dwarf diagnostics could be in error and should be revised because of the effect of the magnetic field on spiralling trajectories of the plasma particles (mainly electrons), predicting a dramatic width increase for high densities of Balmer-β and especially for the δ and ϵ lines. These suggestions overlook important physics and are shown here to be incorrect. Specifically, exact calculations are carried out that can assess the importance of various physical effects neglected in the erroneous analysis mentioned. The net result of accounting for spiralling electron trajectories is typically a small to modest reduction in the line widths, at least for the parameters considered.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"51 2","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Spiralling Trajectories on White Dwarf Spectra: High Rydberg States\",\"authors\":\"Spiros Alexiou\",\"doi\":\"10.3390/atoms11110141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been recently suggested that white dwarf diagnostics could be in error and should be revised because of the effect of the magnetic field on spiralling trajectories of the plasma particles (mainly electrons), predicting a dramatic width increase for high densities of Balmer-β and especially for the δ and ϵ lines. These suggestions overlook important physics and are shown here to be incorrect. Specifically, exact calculations are carried out that can assess the importance of various physical effects neglected in the erroneous analysis mentioned. The net result of accounting for spiralling electron trajectories is typically a small to modest reduction in the line widths, at least for the parameters considered.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\"51 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11110141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11110141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Effects of Spiralling Trajectories on White Dwarf Spectra: High Rydberg States
It has been recently suggested that white dwarf diagnostics could be in error and should be revised because of the effect of the magnetic field on spiralling trajectories of the plasma particles (mainly electrons), predicting a dramatic width increase for high densities of Balmer-β and especially for the δ and ϵ lines. These suggestions overlook important physics and are shown here to be incorrect. Specifically, exact calculations are carried out that can assess the importance of various physical effects neglected in the erroneous analysis mentioned. The net result of accounting for spiralling electron trajectories is typically a small to modest reduction in the line widths, at least for the parameters considered.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions