旁路信道下基于卫星的量子密钥分配

IF 9.3 Q1 PHYSICS, APPLIED PRX quantum : a Physical Review journal Pub Date : 2023-11-01 DOI:10.1103/prxquantum.4.040320
Masoud Ghalaii, Sima Bahrani, Carlo Liorni, Federico Grasselli, Hermann Kampermann, Lewis Wooltorton, Rupesh Kumar, Stefano Pirandola, Timothy P. Spiller, Alexander Ling, Bruno Huttner, Mohsen Razavi
{"title":"旁路信道下基于卫星的量子密钥分配","authors":"Masoud Ghalaii, Sima Bahrani, Carlo Liorni, Federico Grasselli, Hermann Kampermann, Lewis Wooltorton, Rupesh Kumar, Stefano Pirandola, Timothy P. Spiller, Alexander Ling, Bruno Huttner, Mohsen Razavi","doi":"10.1103/prxquantum.4.040320","DOIUrl":null,"url":null,"abstract":"The security of prepare-and-measure satellite-based quantum key distribution (QKD), under restricted eavesdropping scenarios, is addressed. We particularly consider cases where the eavesdropper, Eve, has limited access to the transmitted signal by Alice and/or Bob’s receiver station. This restriction is modeled by lossy channels between relevant parties, where the transmissivity of such channels can, in principle, be bounded by monitoring techniques. An artifact of such lossy channels is the possibility of having bypass channels, those that are not accessible to Eve but that may not necessarily be characterized by the users either. This creates interesting unexplored scenarios for analyzing QKD security. In this paper, we obtain generic bounds on the key rate in the presence of bypass channels and apply them to continuous-variable QKD protocols with Gaussian encoding with direct and reverse reconciliation. We find regimes of operation in which the above restrictions on Eve can considerably improve system performance. We also develop customized bounds for several protocols in the BB84 family and show that, in certain regimes, even the simple protocol of BB84 with weak coherent pulses is able to offer positive key rates at high channel losses, which would otherwise be impossible under an unrestricted Eve. In this case, the limitation on Eve would allow Alice to send signals with larger intensities than the optimal value under an ideal Eve, which effectively reduces the effective channel loss. In all these cases, the part of the transmitted signal that does not reach Eve can play a nontrivial role in specifying the achievable key rate. Our work opens up new security frameworks for spaceborne quantum communications systems.10 MoreReceived 20 December 2022Revised 28 April 2023Accepted 25 September 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040320Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum communication, protocols & technologyQuantum Information, Science & Technology","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Satellite-Based Quantum Key Distribution in the Presence of Bypass Channels\",\"authors\":\"Masoud Ghalaii, Sima Bahrani, Carlo Liorni, Federico Grasselli, Hermann Kampermann, Lewis Wooltorton, Rupesh Kumar, Stefano Pirandola, Timothy P. Spiller, Alexander Ling, Bruno Huttner, Mohsen Razavi\",\"doi\":\"10.1103/prxquantum.4.040320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The security of prepare-and-measure satellite-based quantum key distribution (QKD), under restricted eavesdropping scenarios, is addressed. We particularly consider cases where the eavesdropper, Eve, has limited access to the transmitted signal by Alice and/or Bob’s receiver station. This restriction is modeled by lossy channels between relevant parties, where the transmissivity of such channels can, in principle, be bounded by monitoring techniques. An artifact of such lossy channels is the possibility of having bypass channels, those that are not accessible to Eve but that may not necessarily be characterized by the users either. This creates interesting unexplored scenarios for analyzing QKD security. In this paper, we obtain generic bounds on the key rate in the presence of bypass channels and apply them to continuous-variable QKD protocols with Gaussian encoding with direct and reverse reconciliation. We find regimes of operation in which the above restrictions on Eve can considerably improve system performance. We also develop customized bounds for several protocols in the BB84 family and show that, in certain regimes, even the simple protocol of BB84 with weak coherent pulses is able to offer positive key rates at high channel losses, which would otherwise be impossible under an unrestricted Eve. In this case, the limitation on Eve would allow Alice to send signals with larger intensities than the optimal value under an ideal Eve, which effectively reduces the effective channel loss. In all these cases, the part of the transmitted signal that does not reach Eve can play a nontrivial role in specifying the achievable key rate. Our work opens up new security frameworks for spaceborne quantum communications systems.10 MoreReceived 20 December 2022Revised 28 April 2023Accepted 25 September 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040320Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum communication, protocols & technologyQuantum Information, Science & Technology\",\"PeriodicalId\":74587,\"journal\":{\"name\":\"PRX quantum : a Physical Review journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX quantum : a Physical Review journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.4.040320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.4.040320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

研究了在受限窃听情况下基于卫星的量子密钥分发(QKD)的安全性。我们特别考虑了窃听者Eve对Alice和/或Bob的接收站传输信号的访问受限的情况。这种限制是由相关方之间的有损信道模拟的,这些信道的透射率原则上可以通过监测技术加以限制。这种有损通道的一个缺陷是存在旁路通道的可能性,这些通道是《星战前夜》无法访问的,但也不一定是用户所特有的。这为分析QKD安全性创建了有趣的未知场景。本文给出了存在旁路信道时密钥速率的一般界,并将其应用于具有正、反向调和的高斯编码的连续变量QKD协议。我们发现上述Eve限制的运行机制可以显著提高系统性能。我们还为BB84家族中的几个协议开发了定制边界,并表明,在某些情况下,即使是具有弱相干脉冲的BB84简单协议也能够在高信道损耗下提供正密钥速率,否则在不受限制的Eve下是不可能的。在这种情况下,对Eve的限制将允许Alice发送比理想Eve下的最优值更大的信号强度,从而有效地减少有效信道损失。在所有这些情况下,传输信号中没有到达Eve的部分可以在指定可实现的密钥速率方面发挥重要作用。我们的工作为星载量子通信系统开辟了新的安全框架根据知识共享署名4.0国际许可协议,美国物理学会于2023年9月25日接受doi:https://doi.org/10.1103/PRXQuantum.4.040320Published。这项工作的进一步分发必须保持作者的归属和已发表文章的标题,期刊引用和DOI。发表于美国物理学会物理学科标题(PhySH)研究领域:量子通信,协议与技术量子信息,科学与技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Satellite-Based Quantum Key Distribution in the Presence of Bypass Channels
The security of prepare-and-measure satellite-based quantum key distribution (QKD), under restricted eavesdropping scenarios, is addressed. We particularly consider cases where the eavesdropper, Eve, has limited access to the transmitted signal by Alice and/or Bob’s receiver station. This restriction is modeled by lossy channels between relevant parties, where the transmissivity of such channels can, in principle, be bounded by monitoring techniques. An artifact of such lossy channels is the possibility of having bypass channels, those that are not accessible to Eve but that may not necessarily be characterized by the users either. This creates interesting unexplored scenarios for analyzing QKD security. In this paper, we obtain generic bounds on the key rate in the presence of bypass channels and apply them to continuous-variable QKD protocols with Gaussian encoding with direct and reverse reconciliation. We find regimes of operation in which the above restrictions on Eve can considerably improve system performance. We also develop customized bounds for several protocols in the BB84 family and show that, in certain regimes, even the simple protocol of BB84 with weak coherent pulses is able to offer positive key rates at high channel losses, which would otherwise be impossible under an unrestricted Eve. In this case, the limitation on Eve would allow Alice to send signals with larger intensities than the optimal value under an ideal Eve, which effectively reduces the effective channel loss. In all these cases, the part of the transmitted signal that does not reach Eve can play a nontrivial role in specifying the achievable key rate. Our work opens up new security frameworks for spaceborne quantum communications systems.10 MoreReceived 20 December 2022Revised 28 April 2023Accepted 25 September 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040320Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum communication, protocols & technologyQuantum Information, Science & Technology
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.60
自引率
0.00%
发文量
0
期刊最新文献
End-To-End Resource Analysis for Quantum Interior-Point Methods and Portfolio Optimization Time-Dependent Hamiltonian Reconstruction Using Continuous Weak Measurements Quantum Repeater for W States Linear Optical Logical Bell State Measurements with Optimal Loss-Tolerance Threshold Coupler Microwave-Activated Controlled-Phase Gate on Fluxonium Qubits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1