Andrew J. King, Jiashu Wang, Tianchang Liu, Adharsh Raghavan, Neil C. Tomson* and Aleksandr V. Zhukhovitskiy*,
{"title":"用吡啶二胺配体支架进行 Kumada 交叉偶联聚合时金属特性和复合物核性的影响","authors":"Andrew J. King, Jiashu Wang, Tianchang Liu, Adharsh Raghavan, Neil C. Tomson* and Aleksandr V. Zhukhovitskiy*, ","doi":"10.1021/acspolymersau.3c00022","DOIUrl":null,"url":null,"abstract":"<p >Cross-coupling polymerizations have fundamentally changed the field of conjugated polymers (CPs) by expanding the scope of accessible materials. Despite the prevalence of cross-coupling in CP synthesis, almost all polymerizations rely on mononuclear Ni or Pd catalysts. Here, we report a systematic exploration of mono- and dinuclear Fe and Ni precatalysts with a pyridine diimine ligand scaffold for Kumada cross-coupling polymerization of a donor thiophene and an acceptor benzotriazole monomers. We observe that variation of the metal identity from Ni to Fe produces contrasting polymerization mechanisms, while complex nuclearity has a minimal impact on reactivity. Specifically, Fe complexes appear to catalyze step-growth Kumada polymerizations and can readily access both Csp<sup>2</sup>–Csp<sup>3</sup> and Csp<sup>2</sup>–Csp<sup>2</sup> cross-couplings, while Ni complexes catalyze chain-growth polymerizations and predominantly Csp<sup>2</sup>–Csp<sup>2</sup> cross-couplings. Thus, our work sheds light on important design parameters for transition metal complexes used in cross-coupling polymerizations, demonstrates the viability of iron catalysis in Kumada polymerization, and opens the door to novel polymer compositions.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 6","pages":"475–481"},"PeriodicalIF":4.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00022","citationCount":"0","resultStr":"{\"title\":\"Influence of Metal Identity and Complex Nuclearity in Kumada Cross-Coupling Polymerizations with a Pyridine Diimine-Based Ligand Scaffold\",\"authors\":\"Andrew J. King, Jiashu Wang, Tianchang Liu, Adharsh Raghavan, Neil C. Tomson* and Aleksandr V. Zhukhovitskiy*, \",\"doi\":\"10.1021/acspolymersau.3c00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cross-coupling polymerizations have fundamentally changed the field of conjugated polymers (CPs) by expanding the scope of accessible materials. Despite the prevalence of cross-coupling in CP synthesis, almost all polymerizations rely on mononuclear Ni or Pd catalysts. Here, we report a systematic exploration of mono- and dinuclear Fe and Ni precatalysts with a pyridine diimine ligand scaffold for Kumada cross-coupling polymerization of a donor thiophene and an acceptor benzotriazole monomers. We observe that variation of the metal identity from Ni to Fe produces contrasting polymerization mechanisms, while complex nuclearity has a minimal impact on reactivity. Specifically, Fe complexes appear to catalyze step-growth Kumada polymerizations and can readily access both Csp<sup>2</sup>–Csp<sup>3</sup> and Csp<sup>2</sup>–Csp<sup>2</sup> cross-couplings, while Ni complexes catalyze chain-growth polymerizations and predominantly Csp<sup>2</sup>–Csp<sup>2</sup> cross-couplings. Thus, our work sheds light on important design parameters for transition metal complexes used in cross-coupling polymerizations, demonstrates the viability of iron catalysis in Kumada polymerization, and opens the door to novel polymer compositions.</p>\",\"PeriodicalId\":72049,\"journal\":{\"name\":\"ACS polymers Au\",\"volume\":\"3 6\",\"pages\":\"475–481\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00022\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS polymers Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acspolymersau.3c00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.3c00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
交叉偶联聚合从根本上改变了共轭聚合物(CP)领域,扩大了可获得材料的范围。尽管交叉偶联在 CP 合成中非常普遍,但几乎所有聚合反应都依赖于单核 Ni 或 Pd 催化剂。在此,我们报告了对具有吡啶二亚胺配体支架的单核和双核 Fe 和 Ni 前催化剂的系统探索,这些催化剂可用于供体噻吩和受体苯并三唑单体的 Kumada 交叉偶联聚合反应。我们观察到,金属特性从镍到铁的变化会产生截然不同的聚合机制,而络合物核性对反应性的影响微乎其微。具体来说,铁配合物似乎能催化阶跃生长的库玛达聚合反应,并能很容易地获得 Csp2-Csp3 和 Csp2-Csp2 交叉耦合,而镍配合物则能催化链增长聚合反应,并主要催化 Csp2-Csp2 交叉耦合。因此,我们的工作揭示了用于交叉耦合聚合的过渡金属配合物的重要设计参数,证明了铁催化库玛达聚合的可行性,并为新型聚合物组成打开了大门。
Influence of Metal Identity and Complex Nuclearity in Kumada Cross-Coupling Polymerizations with a Pyridine Diimine-Based Ligand Scaffold
Cross-coupling polymerizations have fundamentally changed the field of conjugated polymers (CPs) by expanding the scope of accessible materials. Despite the prevalence of cross-coupling in CP synthesis, almost all polymerizations rely on mononuclear Ni or Pd catalysts. Here, we report a systematic exploration of mono- and dinuclear Fe and Ni precatalysts with a pyridine diimine ligand scaffold for Kumada cross-coupling polymerization of a donor thiophene and an acceptor benzotriazole monomers. We observe that variation of the metal identity from Ni to Fe produces contrasting polymerization mechanisms, while complex nuclearity has a minimal impact on reactivity. Specifically, Fe complexes appear to catalyze step-growth Kumada polymerizations and can readily access both Csp2–Csp3 and Csp2–Csp2 cross-couplings, while Ni complexes catalyze chain-growth polymerizations and predominantly Csp2–Csp2 cross-couplings. Thus, our work sheds light on important design parameters for transition metal complexes used in cross-coupling polymerizations, demonstrates the viability of iron catalysis in Kumada polymerization, and opens the door to novel polymer compositions.