Artis Becs, Dan Bergström, Gustaf Egnell, Arne Pommerening
{"title":"不同的间伐方法如何影响瑞典南部人工挪威云杉(Picea abies L.)和自然再生桦树(Betula spp.)混交林的空间树木多样性?","authors":"Artis Becs, Dan Bergström, Gustaf Egnell, Arne Pommerening","doi":"10.1139/cjfr-2023-0146","DOIUrl":null,"url":null,"abstract":"Forest biomass has become a viable alternative energy source for replacing fossil fuels, particularly after the European Union acknowledged its sustainability status. In order to reach zero net greenhouse gas emissions by 2045 in Sweden, new efficient methods of biomass extraction, such as geometrical biomass thinnings, are being explored and tested. These machine-based methods involve the extraction of above-ground biomass in narrow 1-2 m-wide strips between extraction racks. While evidence-based optimization of biomass extraction mostly focuses on time- and cost-efficiency and on stand growth, criteria such as tree diversity are often overlooked. However, with ongoing climate change tree diversity is crucial to strengthening the resilience and productivity of future forests, which also enhance the provision of ecosystem services, and overall biological diversity. Therefore, we studied the effects of different biomass thinning strategies on spatial tree diversity in Southern Sweden using nearest-neighbour summary statistics. We found scientific evidence that different geometrical designs of biomass thinning, especially in 1 or 2 m-wide strips, resulted in higher spatial tree diversity compared to conventional biomass thinning. Hence, in mixed conifer-broadleaved forests, biomass thinning in 1 or 2 m-wide strips is recommended for maintaining spatial tree diversity.","PeriodicalId":9483,"journal":{"name":"Canadian Journal of Forest Research","volume":" 14","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How do different thinning methods influence spatial tree diversity in mixed forest stands of planted Norway spruce (Picea abies L.) and naturally regenerated birch (Betula spp.) in Southern Sweden?\",\"authors\":\"Artis Becs, Dan Bergström, Gustaf Egnell, Arne Pommerening\",\"doi\":\"10.1139/cjfr-2023-0146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest biomass has become a viable alternative energy source for replacing fossil fuels, particularly after the European Union acknowledged its sustainability status. In order to reach zero net greenhouse gas emissions by 2045 in Sweden, new efficient methods of biomass extraction, such as geometrical biomass thinnings, are being explored and tested. These machine-based methods involve the extraction of above-ground biomass in narrow 1-2 m-wide strips between extraction racks. While evidence-based optimization of biomass extraction mostly focuses on time- and cost-efficiency and on stand growth, criteria such as tree diversity are often overlooked. However, with ongoing climate change tree diversity is crucial to strengthening the resilience and productivity of future forests, which also enhance the provision of ecosystem services, and overall biological diversity. Therefore, we studied the effects of different biomass thinning strategies on spatial tree diversity in Southern Sweden using nearest-neighbour summary statistics. We found scientific evidence that different geometrical designs of biomass thinning, especially in 1 or 2 m-wide strips, resulted in higher spatial tree diversity compared to conventional biomass thinning. Hence, in mixed conifer-broadleaved forests, biomass thinning in 1 or 2 m-wide strips is recommended for maintaining spatial tree diversity.\",\"PeriodicalId\":9483,\"journal\":{\"name\":\"Canadian Journal of Forest Research\",\"volume\":\" 14\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Forest Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cjfr-2023-0146\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Forest Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cjfr-2023-0146","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
How do different thinning methods influence spatial tree diversity in mixed forest stands of planted Norway spruce (Picea abies L.) and naturally regenerated birch (Betula spp.) in Southern Sweden?
Forest biomass has become a viable alternative energy source for replacing fossil fuels, particularly after the European Union acknowledged its sustainability status. In order to reach zero net greenhouse gas emissions by 2045 in Sweden, new efficient methods of biomass extraction, such as geometrical biomass thinnings, are being explored and tested. These machine-based methods involve the extraction of above-ground biomass in narrow 1-2 m-wide strips between extraction racks. While evidence-based optimization of biomass extraction mostly focuses on time- and cost-efficiency and on stand growth, criteria such as tree diversity are often overlooked. However, with ongoing climate change tree diversity is crucial to strengthening the resilience and productivity of future forests, which also enhance the provision of ecosystem services, and overall biological diversity. Therefore, we studied the effects of different biomass thinning strategies on spatial tree diversity in Southern Sweden using nearest-neighbour summary statistics. We found scientific evidence that different geometrical designs of biomass thinning, especially in 1 or 2 m-wide strips, resulted in higher spatial tree diversity compared to conventional biomass thinning. Hence, in mixed conifer-broadleaved forests, biomass thinning in 1 or 2 m-wide strips is recommended for maintaining spatial tree diversity.
期刊介绍:
Published since 1971, the Canadian Journal of Forest Research is a monthly journal that features articles, reviews, notes and concept papers on a broad spectrum of forest sciences, including biometrics, conservation, disturbances, ecology, economics, entomology, genetics, hydrology, management, nutrient cycling, pathology, physiology, remote sensing, silviculture, social sciences, soils, stand dynamics, and wood science, all in relation to the understanding or management of ecosystem services. It also publishes special issues dedicated to a topic of current interest.