磁介质材料的卡西米尔和卡西米尔-波德相互作用:表面散射膨胀

Giuseppe Bimonte, Thorsten Emig
{"title":"磁介质材料的卡西米尔和卡西米尔-波德相互作用:表面散射膨胀","authors":"Giuseppe Bimonte, Thorsten Emig","doi":"10.1103/physreva.108.052807","DOIUrl":null,"url":null,"abstract":"We develop a general multiple scattering expansion (MSE) for computing Casimir forces between magneto-dielectric bodies and Casimir-Polder forces between polarizable particles and magneto-dielectric bodies. The approach is based on fluctuating electric and magnetic surface currents and charges. The surface integral equations for these surface fields can be formulated in terms of surface scattering operators (SSOs). We show that there exists an entire family of such operators. One particular member of this family is only weakly divergent and allows for a MSE that appears to be convergent for general magneto-dielectric bodies. We prove a number of properties of this operator, and demonstrate explicitly convergence for sufficiently low and high frequencies, and for perfect conductors. General expressions are derived for the Casimir interaction between macroscopic bodies and for the Casimir-Polder interaction between particles and macroscopic bodies in terms of the SSO, both at zero and finite temperatures. An advantage of our approach over previous scattering methods is that it does not require the knowledge of the scattering amplitude ($T$ operator) of the bodies. A number of simple examples are provided to demonstrate the use of the method. Some applications of our approach have appeared previously [T. Emig and G. Bimonte, Phys. Rev. Lett. 130, 200401 (2023)]. Here we provide additional technical aspects and details of our approach.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Casimir and Casimir-Polder interactions for magneto-dielectric materials: Surface scattering expansion\",\"authors\":\"Giuseppe Bimonte, Thorsten Emig\",\"doi\":\"10.1103/physreva.108.052807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a general multiple scattering expansion (MSE) for computing Casimir forces between magneto-dielectric bodies and Casimir-Polder forces between polarizable particles and magneto-dielectric bodies. The approach is based on fluctuating electric and magnetic surface currents and charges. The surface integral equations for these surface fields can be formulated in terms of surface scattering operators (SSOs). We show that there exists an entire family of such operators. One particular member of this family is only weakly divergent and allows for a MSE that appears to be convergent for general magneto-dielectric bodies. We prove a number of properties of this operator, and demonstrate explicitly convergence for sufficiently low and high frequencies, and for perfect conductors. General expressions are derived for the Casimir interaction between macroscopic bodies and for the Casimir-Polder interaction between particles and macroscopic bodies in terms of the SSO, both at zero and finite temperatures. An advantage of our approach over previous scattering methods is that it does not require the knowledge of the scattering amplitude ($T$ operator) of the bodies. A number of simple examples are provided to demonstrate the use of the method. Some applications of our approach have appeared previously [T. Emig and G. Bimonte, Phys. Rev. Lett. 130, 200401 (2023)]. Here we provide additional technical aspects and details of our approach.\",\"PeriodicalId\":20121,\"journal\":{\"name\":\"Physical Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.108.052807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreva.108.052807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们建立了一个通用的多重散射展开(MSE)来计算磁介电体之间的卡西米尔力和极化粒子与磁介电体之间的卡西米尔-波德力。该方法是基于波动的电和磁表面电流和电荷。这些表面场的表面积分方程可以用表面散射算符(sso)表示。我们证明了存在一个这样的算子族。这个家族的一个特殊成员只是弱发散的,并且允许对一般磁介电体似乎是收敛的MSE。我们证明了这个算子的一些性质,并证明了它对足够低和足够高的频率以及对完美导体的显式收敛性。在零温度和有限温度下,导出了宏观物体之间的卡西米尔相互作用和粒子与宏观物体之间的卡西米尔-波尔德相互作用的单点散射方程。与以前的散射方法相比,我们的方法的一个优点是它不需要知道物体的散射幅度($T$算子)。提供了一些简单的示例来演示该方法的使用。我们的方法的一些应用以前已经出现[T]。艾米格和G.比蒙特,物理学家。生态学报,2004,11(2)。这里我们将提供我们方法的其他技术方面和细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Casimir and Casimir-Polder interactions for magneto-dielectric materials: Surface scattering expansion
We develop a general multiple scattering expansion (MSE) for computing Casimir forces between magneto-dielectric bodies and Casimir-Polder forces between polarizable particles and magneto-dielectric bodies. The approach is based on fluctuating electric and magnetic surface currents and charges. The surface integral equations for these surface fields can be formulated in terms of surface scattering operators (SSOs). We show that there exists an entire family of such operators. One particular member of this family is only weakly divergent and allows for a MSE that appears to be convergent for general magneto-dielectric bodies. We prove a number of properties of this operator, and demonstrate explicitly convergence for sufficiently low and high frequencies, and for perfect conductors. General expressions are derived for the Casimir interaction between macroscopic bodies and for the Casimir-Polder interaction between particles and macroscopic bodies in terms of the SSO, both at zero and finite temperatures. An advantage of our approach over previous scattering methods is that it does not require the knowledge of the scattering amplitude ($T$ operator) of the bodies. A number of simple examples are provided to demonstrate the use of the method. Some applications of our approach have appeared previously [T. Emig and G. Bimonte, Phys. Rev. Lett. 130, 200401 (2023)]. Here we provide additional technical aspects and details of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supersonic friction of a black hole traversing a self-interacting scalar dark matter cloud Analysis of loss correction with the Gottesman-Kitaev-Preskill code Radiation of optical angular momentum from a dipole source in a magneto-birefringent disordered environment Epistasis and pleiotropy shape biophysical protein subspaces associated with drug resistance Nonequilibrium steady states in coupled asymmetric and symmetric exclusion processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1